Two-Dimensional Phase Behavior of Colloidal Peanuts

ORAL

Abstract

While the phase behavior of spherical colloidal suspensions has been well studied, the ordering of non-spherical colloidal particles remains a largely unexplored yet important problem. In this talk we will describe ongoing studies of one very simple extension of the spherical particle: the colloidal peanut. These peanuts have an aspect ratio that makes them comparable to dimer particles. Confining the colloidal peanuts to two dimensions, we find that the suspension can undergo a phase transition from a liquid to an ordered phase in which each individual peanut lobe resides on a triangular lattice site. The lobe packing is very similar to the hexagonally close packed crystalline arrangement formed by spheres in 2D. Unlike their spherical counterparts, however, the colloidal peanuts are not isotropic, and in particular, each peanut has a specific orientation, or director. In this talk we will describe the correlations between defects in the underlying triangular lattice and the local director field. We will also report on our measurements of long-range director correlations, and if time permits, we will describe ongoing work relating to phases formed by peanut particles with different aspect ratios.

Authors

  • Sharon Gerbode

    Cornell University

  • Angie Wolfgang

    Cornell University

  • Stephanie Lee

    Cornell University

  • Bettina John

    Cornell University

  • Chekesha Liddell

    Cornell University

  • Fernando Escobedo

    Cornell University

  • Itai Cohen

    Cornell University