Supersonic Molecular Beam Optical Stark Spectroscopy of MnH.

ORAL

Abstract

The large moment of inertia, large magnetic moment, and possible large permanent electric dipole moment of manganese monohydride, MnH, makes it a prime candidate for ultra-cold molecule production via Stark deceleration and magnetic trapping\footnote {J.R. Bochinski, E.R. Hudson, H.J. Lewandowski, and J. Ye, \textit{Phys. Rev. A} \textbf{70}, 043410 (2004).}'\footnote {S.Y.T. van de Meerakker, R.T. Jongma, H.L. Bethlem, and G. Meijer, \textit{Phys. Rev. A} \textbf{64}, 041401(R) (2001).}. Here we report the first molecular beam production of MnH and the analysis of the Stark effect in the (0,0) $A^{7} \Pi $ -- $X^ {7}\Sigma ^{+}$ band. The sample was prepared by laser ablation of solid Mn in an H$_ {2}$ supersonic expansion. The low rotational temperature ($<$50 K) and near natural linewidth resolution ($\sim$50 MHz) facilitated analysis of the $^{55}$Mn (I=5/2) and $^{1}$H (I=1/2) hyperfine structure. A comparison of the derived field-free parameters with those obtained from sub- Doppler optical\footnote{T.D. Varberg, J.A. Gray, R.W. Field, and A.J. Merer, \textit{J. Mol. Spec.} \textbf{156}, 296-318 (1992).} and Doppler limited infrared\footnote{I.E. Gordon, D.R.T. Appadoo, A. Shayesteh, K.A. Walker, and P.F. Bernath, \textit{J. Mol. Spec}., \textbf{229}, 145-149 (2005).} measurements will be made. Progress on the analysis of the Stark effect will be given.

Authors

  • Jamie Gengler

  • Tongmei Ma

  • Jeremy Harrison

  • Timothy Steimle

    Arizona State University