EDIPIC-2D, an Open-Source Versatile and Comprehensive Particle-In-Cell Code for Low-Temperature Plasma Modeling
ORAL · Invited
Abstract
Building on a prior 1D version [7], the code incorporates a standard electrostatic explicit momentum-conserving scheme (in both Cartesian and cylindrical geometries), as well as a direct implicit scheme with the Darwin [8] approximation for self-consistent electromagnetic field modeling [9]. The code is parallelized using the Message Passing Interface (MPI) standard and features state-of-the-art collision models. It accounts for different surface materials, leading to various electron and ion-induced secondary electron emissions. The inclusion of inner objects within the computational domain allows for the modeling of more realistic Cartesian and Cylindrical geometries.
The code has been benchmarked in multiple studies [10-12] and is actively used by both industry partners and academic researchers, particularly within the Princeton Collaborative Low-Temperature Plasma Research Facility.
We exemplify the code’s capabilities by going through recently published examples [1-6] and many others.
–
Publication: [1] S. Janhunen, A. Smolyakov, O. Chapurin, D. Sydorenko, I. Kaganovich, and Y. Raitses, "Nonlinear structures and anomalous transport in partially magnetized E×B plasmas," Physics of Plasmas 25(1), 011608 (2018).<br>[2] S. Rauf, D. Sydorenko, S. Jubin, W. Villafana, S. Ethier, A. Khrabrov, and I. Kaganovich, "Particle-in-cell modeling of electron beam generated plasma," Plasma Sources Sci. Technol. 32(5), 055009 (2023).<br>[3] S.H. Son, et al., "Unintended gas breakdowns in narrow gaps of advanced plasma sources for semiconductor fabrication industry," Applied Physics Letters 123(23), 232108 (2023).<br>[4] H. M. Sun, J. Chen, I. D. Kaganovich, A. Khrabrov, and D. Sydorenko, Phys. Rev. Lett. 129, 125001 (2022).<br>[5] H. M. Sun, J. Chen, I. D. Kaganovich, A. Khrabrov, and D. Sydorenko, Phys. Rev. E 106, 035203 (2022).<br>[6] S. Jubin et al. "Numerical thermalization in 2D PIC simulations: Practical estimates for low temperature plasma simulations", submitted at Physics of Plasmas (2023).<br>[7] D. Sydorenko, Particle-in-Cell Simulations of Electron Dynamics in Low Pressure Discharges with Magnetic Fields, University of Saskatchewan, Canada, 2006.<br>[8] D.W. Hewett, "Low-frequency electromagnetic (Darwin) applications in plasma simulation," Computer Physics Communications 84(1–3), 243–277 (1994).<br>[9] D. Sydorenko, et al., Phys. Plasmas 32, 043904 (2025).<br>[10] W. Villafana, F. Petronio, A.C. Denig, M.J. Jimenez, D. Eremin, L. Garrigues, F. Taccogna, A. Alvarez-Laguna, J.P. Boeuf, A. Bourdon, P. Chabert, T. Charoy, B. Cuenot, K. Hara, F. Pechereau, A. Smolyakov, D. Sydorenko, A. Tavant, and O. Vermorel, "2D radial-azimuthal particle-in-cell benchmark for E × B discharges," Plasma Sources Sci. Technol. 30(7), 075002 (2021).<br>[11] T. Charoy, J.P. Boeuf, A. Bourdon, J.A. Carlsson, P. Chabert, B. Cuenot, D. Eremin, L. Garrigues, K. Hara, I.D. Kaganovich, A.T. Powis, A. Smolyakov, D. Sydorenko, A. Tavant, O. Vermorel, and W. Villafana, "2D axial-azimuthal particle-in-cell benchmark for low-temperature partially magnetized plasmas," Plasma Sources Sci. Technol. 28(10), 105010 (2019).<br>[12] J. Carlsson, et al., "Validation and benchmarking of two particle-in-cell codes for a glow discharge," Plasma Sources Sci. Technol. 26(1), 014003 (2016).<br>
Presenters
-
Willca Villafana
Princeton Plasma Physics Laboratory (PPPL)
Authors
-
Willca Villafana
Princeton Plasma Physics Laboratory (PPPL)
-
Dmytro Sydorenko
Department of Physics, University of Alberta, AB, Canada
-
Alexander V. Khrabrov
Princeton Plasma Physics Laboratory (PPPL)
-
Igor D Kaganovich
Princeton Plasma Physics Laboratory (PPPL)
-
Stephane Ethier
Princeton Plasma Physics Laboratory, Princeton, USA