APS Logo

Holographic High-Damage-Threshold Plasma Optics

ORAL

Abstract

With an intensity damage threshold several orders higher than solid-state optics, plasma photonics enable the spatiotemporal manipulation of light for high-power and high-intensity laser applications. Diffractive plasma optics can be constructed by imprinting the intensity interference pattern between two pump beams–one reference and one structured–as a plasma density variation via ponderomotively-driven ion structures or spatially-varying ionization. The resulting optic can diffract a reference probe to form the structured pump. The various imprint mechanisms typically have pump energy and intensity requirements far lower than the damage threshold for the probe.

Using particle-in-cell and paraxial wave simulations, and recent experimental results, we present complex diffractive plasma optics. The chromatic dispersion from plasma gratings can be used to construct compressor gratings. Holograms enable combining multiple optics into a single diffractive optic that can, for example, both steer and focus a probe. Furthermore, a Laguerre-Gaussian pump beam can induce orbital angular momentum and a Bessel-Gaussian pump can create diffraction-less probe beams. When diffractive and refractive plasma optics are combined–for example, a zone plate and channel–they can achromatically focus ultrashort pulses.

Publication: Edwards, M. R., Munirov, V. R., Singh, A., Fasano, N. M., Kur, E., Lemos, N., Mikhailova, J. M., Wurtele, J. S., & Michel, P. (2022). Holographic plasma lenses. Phys. Rev. Lett. 128(6), 065003.<br>Edwards, M. R., & Michel, P. (2022). Plasma transmission gratings for compression of high-intensity laser pulses. Phys. Rev. Applied, 18(2), 024026.<br>Edwards, M., Waczynski, S., Rockafellow, E., Manzo, L., Zingale, A., Michel, P., & Milchberg, H. (2023). Control of intense light with avalanche-ionization plasma gratings. Optica, 10(12), 1587-1594.<br>Edwards, M. R., Fasano, N. M., Giakas, A. M., Wang, M. M., Griff-McMahon, J., Morozov, A., ... & Mikhailova, J. M. (2024). Greater than five-order-of-magnitude postcompression temporal contrast improvement with an ionization plasma grating. Phys. Rev. Lett., 133(15), 155101.<br>Singh, D., Cao, S., Palastro, J. P., Thomas, A. G. R., Michel, P., and Edwards, M. R., Achromatic Plasma Lenses. [Manuscript in preparation]

Presenters

  • Devdigvijay Singh

    Stanford University

Authors

  • Devdigvijay Singh

    Stanford University

  • Victor Perez-Ramirez

    Stanford University

  • Sida Cao

    Stanford University

  • Ke Ou

    Stanford University

  • Michelle Mei Wang

    Princeton University

  • Julia M Mikhailova

    Princeton University

  • Pierre A Michel

    Lawrence Livermore National Laboratory

  • Matthew R Edwards

    Stanford University