APS Logo

Absolute O atom density measurements by actinometry: comparison to cavity ring-down spectroscopy

ORAL

Abstract

Optical emission actinometry is widely used to determine the densities of reactive gas-phase atomic species like oxygen atoms, since it is a simple, non-intrusive technique requiring little equipment. The accuracy of absolute measurements however depends on the excitation cross-sections of both the studied species and the actinometer gas, which are typically poorly characterised.

We have evaluated the validity of O actinometry by comparison to cavity ring-down (CRDS) measurements. We measured both in continuous glow discharges in various mixtures of oxygen, CO2, Ar and Kr at pressures between 1 and 5 Torr.

The emission is monitored with an Isoplane SCT320 spectrometer and with an OceanOptics Maya USB spectrometer. The O atom density is determined by CRDS using the O(1D2)↔O(3PJ) transition at 15,867.8cm-1.

The electric field in the tube is measured directly, allowing computation of the EEDF with the LoKI Boltzmann solver. The O atom density was then calculated from the excitation cross-sections and the line intensities.

Large discrepancies are found between CRDS and actinometry using the IST-Lisbon oxygen dataset for the EEDF and common cross-sections for the lines of interest. We also propose a method to estimate the reduced electric field from the ratio of atomic emission lines.

Presenters

  • Edmond Baratte

    Laboratoire de Physique des Plasmas (LPP), CNRS, Sorbonne Université, Ecole Polytechnique Institut Polytechnique de Paris, 91128 Palaiseau France, Laboratoire de Physique des Plasmas, Ecole Polytechnique, Laboratoire de Physique des Plasmas (UMR 7648), CNRS, Univ. Paris Saclay, Sorbonne Université, École Polytechnique, France

Authors

  • Edmond Baratte

    Laboratoire de Physique des Plasmas (LPP), CNRS, Sorbonne Université, Ecole Polytechnique Institut Polytechnique de Paris, 91128 Palaiseau France, Laboratoire de Physique des Plasmas, Ecole Polytechnique, Laboratoire de Physique des Plasmas (UMR 7648), CNRS, Univ. Paris Saclay, Sorbonne Université, École Polytechnique, France

  • Andrey Volynets

    Laboratoire de Physique des Plasmas (LPP), CNRS, Sorbonne Université, Ecole Polytechnique Institut Polytechnique de Paris, 91128 Palaiseau France

  • Dmitry Lopaev

    Moscow State University, Skobeltsyn Institute of Nuclear Physics, Microelectronics Dep., Moscow, Russia

  • Cherif Si Moussi

    Laboratoire de Physique des Plasmas (LPP), CNRS, Sorbonne Université, Ecole Polytechnique Institut Polytechnique de Paris, 91128 Palaiseau France

  • Jean-Paul Booth

    Laboratoire de Physique des Plasmas (LPP), CNRS, Sorbonne Université, Ecole Polytechnique Institut Polytechnique de Paris, 91128 Palaiseau France

  • Olivier Guaitella

    Laboratoire de Physique des Plasmas (LPP), CNRS, Sorbonne Université, Ecole Polytechnique Institut Polytechnique de Paris, 91128 Palaiseau France, Laboratory of Plasma Physics, École Polytechnique, Laboratoire de Physique des Plasmas, Laboratoire de Physique des Plasmas, Ecole Polytechnique, Laboratoire de Physique des Plasmas (UMR 7648), CNRS, Univ. Paris Saclay, Sorbonne Université, École Polytechnique, France