Finding Dynamical Chaos in Stellar Models
POSTER
Abstract
Using MESA we have modeled the main sequence evolution of a solar-like model, and then again with a small perturbation on the order of one part in 10^8 on the central hydrogen fraction to examine the divergence of the two models, and also the perturbation in rotation in the same order of magnitude.
We find that these models are indeed chaotic when rotating, showing an exponential divergence on very short time-scales and a maximum phase space separation of approximately 0.01 in our time scale run from 3 to 7 Gyr when we fit data to the Lyapunov exponent. Calculations of ensembles of these models show that increment in resolution does not increase the accuracy in the exponential growth region, which leads to being more dependent on the time factor on each model due to evolution time process for each model.
This suggests an intrinsic limit to the precision of stellar structure and evolution models due to dynamical chaos showed in the program and the accuracy in the program for the stars simulations.
Publication: Agra was, P., Hurley, J., Stevenson, S., Szecsi, D., &Flynn C. 2020, The fates of massive stars: exploring uncertainties in stellar evolution with METISSE, Tech. rep. https://arxiv.org/abs/2005.13177v2 <br><br>Size man, M. L., & Perdang, J. 1973, Secular stability. V. The Perturbation of Chemical Abundances, Tech. rep.<br><br>Ayala, A., Lopes, I., Hernandez, A. G., Suarez, J C., & Elorza I. M. 2020, Monthly Notices of the royal Astronomical Society, 491,409, doi: 10.1093/mnras/stz3002<br><br>Belczynski, K., Heger, A., Gladysz, W., et al. 2016, A&A, 594, doi:10.1051/0004-6361/201628980<br><br>Bloom, J. S., Karen, D., Shen, K. J., et al. 2012, Astrophysical Journal Letters, 744, 1, doi: 10.1088/2041-8205/744/2/L17<br><br>Brown, R. J. 2018, A Modern Introduction to dynamical Systems, 1st end. (Oxford, UK: Oxford University Press), 408 <br><br>Carroll, B. W., Ostlie,D. A., & Friedlander, M.1997, Physics Today, 50, 66, doi: 10.1063/1.881827<br><br>Hansen, C. J., Kawaler, S. D., & Trimble, V. 2004, Stellar Interiors: Physical Principles, Structure, and Evolution, 2nd end. (New York: Springer-Verlag),526, doi: 10.1007/978-1-4419-9110-2 https://www.springer.com/gp/book/9780387200897<br><br>Heger, A., Langer, N., & Woolsley, S. E. 2000, Presupernova Evolution of Rotating Massive Stars. I. Numerical Method and Evolution of the Internal Stellar Structure, Tech. Rep. 1 doi: 10.1086/308158<br><br>Prialnik, D. 2009, Introduction theory stellar structure and evolution, 2nd end. (Cambridge, UK: Cambridge University Press), 328. https://www.Cambridge.org/us/academic/subjects/physics/astrophysics/introduction-theory-stellar-structure-and-evolution-2nd-edition?format=HB&isbn=9780521866040<br><br>Paxton, B., Schwab, J., Bauer, E. B., Bildsten, L., Blinnikov, S., Duffell, P., Farmer, R., Goldberg, J. A., Marchant, P., Sorokina, E., Thoul, A., Townsend, R. H. D., & Timmes, F. X. (2017). Modules for Experiments in Stellar Astrophysics (MESA): Convective Boundaries, Element Diffusion, and Massive Star Explosions. The Astrophysical Journal Supplement Series, 234(2), 34. https://doi.org/10.3847/1538-4365/aaa5a8
Presenters
-
Giovanni Paz-Silva
California State University Chico
Authors
-
Giovanni Paz-Silva
California State University Chico
-
Nicholas J Nelson
CSU Chico
-
Ian S Edwards
CSU Chico
-
Bjorn Larsen
CSU Chico