APS Logo

The Light Dark Matter eXperiment

ORAL

Abstract

The Light Dark Matter eXperiment (LDMX) proposes a high-statistics search for low-mass dark matter in fixed-target electron-nucleus collisions. Ultimately, LDMX will explore thermal relic dark matter over most of the viable sub-GeV mass range to a decisive level of sensitivity. To achieve this goal, LDMX employs the missing momentum technique, where electrons scattering in a thin target can produce dark matter via ``dark bremsstrahlung'' giving rise to significant missing momentum and energy in the detector. To identify these rare signal events, LDMX individually tags incoming beam-energy electrons, unambiguously associates them with low energy, moderate transverse-momentum recoils of the incoming electron, and establishes the absence of any additional forward-recoiling charged particles or neutral hadrons. LDMX will employ low mass tracking to tag incoming beam-energy electrons with high purity and cleanly reconstruct recoils. A high-speed, granular calorimeter with MIP sensitivity is used to reject the high rate of bremsstrahlung background at trigger level while working in tandem with a hadronic calorimeter to veto rare photo-nuclear reactions. This talk will summarize the small-scale detector concept for LDMX, ongoing performance studies, and near future prospects.

Authors

  • Omar Moreno

    SLAC