APS Logo

First principles study of electronic, magnetic and inter-layer coupling in a layered magnetic insulator

POSTER

Abstract

The crystallographic, electronic and magnetic properties of layered CrCl$_{3}$ were investigated using density functional theory. We use the newly developed spin van der Waals density functional (svdW-DF) in order to explore the atomic, electronic and magnetic structure. Our results indicate that treatment of the long-range interlayer forces with the svdW-DF improves the accuracy of crystal structure predictions. The cleavage energy was estimated to be 0.29 J/m$^{2}$ suggesting that CrCl$_{3}$ should be cleavable using standard mechanical exfoliation techniques. The inclusion of spin in the non-local vdW-DF allows us to directly probe the coupling between the magnetic structure and lattice degrees of freedom. An understanding of the link between electronic, magnetic and structural properties can be useful for novel device applications such as magnetoelectric devices, spin transistors, and 2D magnet.

Authors

  • Santosh KC

    San Jose State University

  • Antara Bhattacharya

    SLAC National Accelerator Laboratory, Department of Physics, University of Nevada, Reno, 89557, USA, School of Mathematics and Physics, the University of Queensland, Brisbane, QLD 4072, Australia, University of California, Berkeley, National Institute for Materials Science, Lawrence Berkeley National Lab, Chemical Engineering, Stanford University, Santa Clara University, Lawrence Livermore National Laboratory, University of California San Diego, University of Nevada, Reno, Nihon University, Osaka U., LLNL, SLAC, U. of Nevada, Reno, California State University, Chico, Lawrence Livermore National Laboratory; UC, Irvine, Chemical Engineering and Materials Science, University of Minnesota Twin Cities, Physics, California Polytechnic State University, San Luis Obispo, Oak Ridge National Lab, Department of Physics, California Polytechnic State University, San Luis Obispo, CA 93407, USA, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6021, New Zealand, California Polytechnic State University, University of California, Santa Barbara, Department of Physics, California Polytechnic State University, Victoria University of Wellington, Palo Alto High School, Palo Alto, CA, Navy Children School, Mumbai, Maharashtra, India

  • Antara Bhattacharya

    SLAC National Accelerator Laboratory, Department of Physics, University of Nevada, Reno, 89557, USA, School of Mathematics and Physics, the University of Queensland, Brisbane, QLD 4072, Australia, University of California, Berkeley, National Institute for Materials Science, Lawrence Berkeley National Lab, Chemical Engineering, Stanford University, Santa Clara University, Lawrence Livermore National Laboratory, University of California San Diego, University of Nevada, Reno, Nihon University, Osaka U., LLNL, SLAC, U. of Nevada, Reno, California State University, Chico, Lawrence Livermore National Laboratory; UC, Irvine, Chemical Engineering and Materials Science, University of Minnesota Twin Cities, Physics, California Polytechnic State University, San Luis Obispo, Oak Ridge National Lab, Department of Physics, California Polytechnic State University, San Luis Obispo, CA 93407, USA, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6021, New Zealand, California Polytechnic State University, University of California, Santa Barbara, Department of Physics, California Polytechnic State University, Victoria University of Wellington, Palo Alto High School, Palo Alto, CA, Navy Children School, Mumbai, Maharashtra, India