APS Logo

Gyrokinetic microtearing turbulence in the stellarator Wendelstein 7-X

ORAL

Abstract

Following the optimization of the stellarator Wendelstein 7-X (W7-X) to reduce neoclassical transport [1], microturbulence prevails as the primary transport mechanism limiting its plasma confinement. While electrostatic turbulent modes – such as the ion-temperature-gradient (ITG) and the electron-temperature-gradient (ETG) modes – have been recognized as key drivers of turbulent transport across a wide range of W7-X operational scenarios [1, 2, 3, 4], this work presents the first demonstration that a type of electromagnetic turbulence, specifically driven by microtearing modes (MTMs), dominates in a different experimental regime. This scenario, characterized by only neutral beam injection (NBI) heating, displays a steep density gradient and moderate ion and electron temperature gradients in the inner core (ρ ≤ 0.5).

Using reasonably heat and particle flux-matched simulations with the gyrokinetic code GENE [5] including experimental profiles, collisions and electromagnetic effects, we show that MTMs are the primary contributors to turbulent transport in this scenario. This work highlights the importance of incorporating electromagnetic effects and collisions to reproduce experimental fluxes – parameters that were excluded in previous studies of density-gradient-driven regimes [6, 7]. In addition, our simulations show that density-gradient-driven trapped electron modes (TEMs) are not unstable. This stabilization is likely due to the maximum-J property of devices such as W7-X [8].

Publication: [1] T.S. Pedersen, et al., 2022 Nucl. Fusion 62 042022<br>[2] T. Klinger, et al., 2019 Nucl. Fusion 59 112004<br>[3] F. Wilms, et al., 2024 Nucl. Fusion 64 096940<br>[4] D. Fernando, et al., 2025 arXiv:2503.08943v1<br>[5] F. Jenko, et al., 2000 Phys. Plasmas 7 5<br>[6] P. Costello, et al., 2023 J. Plasma Phys. 89 905890402<br>[7] H. Thienpondt, et al., 2025 Nucl. Fusion 65 016062<br>[8] J. Proll, et al., 2012 Phys. Rev. Let. 108 245002<br>[9] O. Grulke et al 2024 Nucl. Fusion 64 112002

Presenters

  • Hugo Isaac Cu Castillo

    Max-Planck-Institute for Plasma Physics (IPP Garching)

Authors

  • Hugo Isaac Cu Castillo

    Max-Planck-Institute for Plasma Physics (IPP Garching)

  • Alejandro B Bañón Navarro

    Max-Planck-Institute for Plasma Physics (IPP Garching), Max-Planck-Institute for Plasma Physics, Garching

  • Gabriele Merlo

    Max-Planck-Institute for Plasma Physics

  • Frank Jenko

    Max-Planck-Institute for Plasma Physics (IPP Garching)

  • Oliver Ford

    Max Planck Institute for Plasma Physics, Max-Planck-Institute for Plasma Physics (IPP Greifswald), Max Planck Institute for Plasma Physics, Greifswald, Germany

  • Sebastian Bannmann

    Max Planck Institute for Plasma Physics

  • Joachim Geiger

    Max Planck Institute for Plasma Physics

  • Markus Wappl

    Max-Planck-Institute for Plasma Physics

  • Peter Zsolt Poloskei

    Max Planck Institute for Plasma Physics, Greifswald, Max Planck Institute for Plasma Physics

  • Felix Reimold

    Max-Planck-Institut fur Plasmaphysik, Greifswald

  • Thilo Romba

    Max Planck Insitute for Plasma Physics, Max Planck Institute for Plasma Physics