Applying Differentiable Programming to Theoretical, Computational, and Experimental Plasma Physics
ORAL · Invited
Abstract
–
Publication: 1. Joglekar, A. S. & Thomas, A. G. R. Unsupervised discovery of nonlinear plasma physics using differentiable kinetic simulations. J. Plasma Phys. 88, 905880608 (2022).<br>2. Joglekar, A. S. & Thomas, A. G. R. Machine learning of hidden variables in multiscale fluid simulation. Mach. Learn.: Sci. Technol. 4, 035049 (2023).<br>3. Milder, A. L., Joglekar, A. S., Rozmus, W. & Froula, D. H. Qualitative and quantitative enhancement of parameter estimation for model-based diagnostics using automatic differentiation with an application to inertial fusion. Mach. Learn.: Sci. Technol. 5, 015026 (2024).<br>4. Joglekar, A. S. et. al. Mitigating transient growth in the two plasmon decay instability by optimizing laser bandwidth
Presenters
-
Archis S Joglekar
Ergodic LLC
Authors
-
Archis S Joglekar
Ergodic LLC
-
Alec G.R. GR Thomas
Michigan University
-
Avram Milder
Laboratory for Laser Energetics (LLE)
-
Dustin H Froula
University of Rochester