APS Logo

Bayesian optimization of sheath field accelerated ion beams via high-repetition-rate feedback to spectral dispersion

POSTER

Abstract

We report analysis of a Bayesian-optimized target normal sheath acceleration (TNSA) experiment at the ELI-Beamlines facility, where the spectral dispersion (and subsequent on-target pulse shape) of the L3-HAPLS laser was modified using outputs from a multivariate Bayesian optimizer trained on data from a Proton Beam Imaging Energy Spectrometer (PROBIES) [1,2]. In addition to the spectrally-resolved proton beam spatial profile provided by PROBIES, proton time-of-flight and Thomson parabola spectrometer diagnostics were run for cross-calibration [3] alongside other diagnostics.



Around 3500 shots onto 10 µm Cu foil were taken during the beam time in batches of 120 shots, retraining the surrogate model used by the optimizer between batches. With total ion yield as the optimization target, a strong trend towards negative offsets in group delay dispersion (to the available limit of -1000 fs2) was consistently observed, while positive GDD offsets resulted in worse performance than nominal best compression (~30 fs, ~1021 W/cm2, a0 ~ 20). Models trained on large ensembles of PIC simulations show good qualitative agreement with the data.

[1] D. Mariscal et al., Plasma Physics and Controlled Fusion 63, 114003 (2021)

[2] D. Mariscal et al., Rev. Sci. Instrum. 94(2) (2023)

[3] I. Rodger et al., Rev. Sci. Instrum. (In review)

Presenters

  • Matthew P. Hill

    Lawrence Livermore National Laboratory

Authors

  • Matthew P. Hill

    Lawrence Livermore National Laboratory

  • Martin Adams

    Fraunhofer Institute for Laser Technology

  • Rushil Anirudh

    Lawrence Livermore National Laboratory

  • Benjamin Bachmann

    Lawrence Livermore National Laboratory

  • Josef Cupal

    ELI Beamlines

  • Blagoje Z Djordjevic

    Lawrence Livermore National Laboratory

  • Eric Folsom

    LLNL

  • Lorenzo Giuffrida

    ELI Beamlines

  • Elizabeth S Grace

    Lawrence Livermore National Laboratory

  • Filip Grepl

    ELI Beamlines

  • Arsenios Hadjikyriacou

    ELI Beamlines

  • Radek Horálek

    ELI Beamlines

  • Valeriia Istokskaia

    ELI Beamlines

  • Pavel Koupil

    ELI Beamlines

  • Moritz Kröger

    Frauenhofer Institue for Laser Technology

  • Derek A Mariscal

    Lawrence Livermore National Laboratory

  • Tomáš Mazanec

    ELI Beamlines

  • Petr Mazůrek

    ELI Beamlines

  • James J McLoughlin

    Lawrence Livermore National Laboratory

  • Isabella M Pagano

    Lawrence Livermore National Laboratory, University of Texas at Austin

  • Davorin Peceli

    ELI Beamlines

  • Birgit Plötzeneder

    ELI Beamlines

  • Izzy Rodger

    Lawrence Livermore National Laboratory

  • Dean R Rusby

    Lawrence Livermore National Laboratory

  • Abhik Sarkar

    Lawrence Livermore National Laboratory, Lawrence Livermore Natl Lab

  • Matthew Peter Selwood

    Lawrence Livermore National Laboratory

  • Michal Sestak

    ELI Beamlines

  • Francesco Schillaci

    ELI Beamlines

  • Raspberry Simpson

    Lawrence Livermore National Laboratory

  • Stanislav Stanček

    ELI Beamlines

  • Petr Szotkowski

    ELI Beamlines

  • Jayaraman J Thiagarajan

    Lawrence Livermore National Laboratory

  • Franziska S Treffert

    Lawrence Livermore National Laboratory

  • Maksym Tryus

    ELI Beamlines

  • Andriy Velyhan

    ELI Beamlines

  • Johannes Weitenberg

    Frauenhofer Institue for Laser Technology

  • Jackson G Williams

    Lawrence Livermore National Laboratory

  • Warren L York

    LLNL

  • Daniele Margarone

    ELI Beamlines

  • Constantin Haefner

    Frauenhofer Institue for Laser Technology

  • Tammy Ma

    Lawrence Livermore National Laboratory