APS Logo

Gradient-based single-stage dipole optimization

ORAL

Abstract

Increasing evidences shows that equilibrium choice has orders-of-magnitude impact on stellarator coil complexity [1, 2]. Because of this, “Single-stage” optimization methods that simultaneously iterates the plasma and coils have gained widespread use in recent years. The success of MUSE [3] shows that stellarator coil sets using dipole [4] and permanent magnet (PM) arrays can achieve high accuracy with low cost. However, works on combined dipole-plasma optimization remains limited. This is because most existing dipole/PM codes performs non-differentiable, discrete, non-convex optimization that is challenging to integrate into optimization loops [5]. Other works used overly simplistic winding surface models that are fast but cannot directly target dipole quantities [6]. We present a gradient-based single-stage method for combined dipole-plasma optimization. Our method uses the recently developed QUADCOIL [2] winding surface model that is differentiable, fast, and supports realistic dipole metrics. We present a muse-like permanent magnet stellarator generated with this method, and compare its PM array complexity and accuracy with existing works.

Publication: 1. Kappel, J., Landreman, M., & Malhotra, D. (2024). The Magnetic Gradient Scale Length Explains Why Certain Plasmas Require Close External Magnetic Coils. Plasma Physics and Controlled Fusion, 66(2), 025018. https://doi.org/10.1088/1361-6587/ad1a3e<br>2. Fu, L., Paul, E. J., Kaptanoglu, A. A., & Bhattacharjee, A. (2025). Global Stellarator Coil Optimization With Quadratic Constraints and Objectives. Nuclear Fusion, 65(2), 026045. https://doi.org/10.1088/1741-4326/ada810<br>3. Qian, T. M., Chu, X., Pagano, C., Patch, D., Zarnstorff, M. C., Berlinger, B., Bishop, D., Chambliss, A., Haque, M., Seidita, D., & Zhu, C. (2023). Design and Construction of the MUSE Permanent Magnet Stellarator. Journal of Plasma Physics, 89(5), 955890502. https://doi.org/10.1017/S0022377823000880<br>4. Gates, D. A., Aslam, S., Berzin, B., Bonofiglo, P., Cote, A., Dudt, D. W., Flom, E., Fort, D., Koen, A., Kruger, T. G., Kumar, S. T. A., Martin, M. F., Ottaviano, A., Pasmann, S., Romano, P. K., Swanson, C. P. S., Tang, L., Winkler, E., & Wu, R. (2025). Stellarator Fusion Systems Enabled by Arrays of Planar Coils. Nuclear Fusion, 65(2), 026052. https://doi.org/10.1088/1741-4326/ada56c<br>5. Kaptanoglu, A. A., Conlin, R., & Landreman, M. (2023). Greedy Permanent Magnet Optimization. Nuclear Fusion.<br>6. Nuclear Fusion, 60(10), 106002. https://doi.org/10.1088/1741-4326/aba453<br>7. Yu, G., Liu, K., Qian, T., Xie, Y., Nie, X., & Zhu, C. (2024). Quasi-Single-Stage Optimization for Permanent Magnet Stellarators. Nuclear Fusion, 64(7), 076055. https://doi.org/10.1088/1741-4326/ad521c

Presenters

  • Lanke Fu

    Princeton University

Authors

  • Lanke Fu

    Princeton University

  • Alan A Kaptanoglu

    New York University, Courant Institute

  • Elizabeth J Paul

    Columbia University

  • Amitava Bhattacharjee

    Princeton University