APS Logo

Some Recent Advances in Nonthermal Proton-Boron11 Fusion

ORAL

Abstract

Economical proton-Boron11 fusion may be enabled through nonthermal ion populations [1,2]. These populations may be maintained by rotating plasma sustained by large voltage drops in a mirror geometry [3]. The prompt and differential deconfinement of alpha particles is an absolutely existential requirement for pB11 fusion [4]. Differential confinement may be facilitated by ponderomotive barriers in rotating plasma [5] and by ion mix techniques [6]. The investment in rotation energy may be retained under fuel replacement and fusion ash exhaust [7].

1. E. J. Kolmes et al., Wave-Supported Hybrid Beam-Thermal pB11 Fusion, Phys. Plasma 29, 110701 (2022).



2. I. E. Ochs et al., Improving the Feasibility of Economical Proton-Boron 11 Fusion via Alpha Channeling with a Hybrid Fast and Thermal Proton Scheme, Phys. Rev. E 106, 055215 (2022).



3. E. J. Kolmes et al.,Massive, Long-Lived Electrostatic Potentials in a Rotating Mirror Plasma, Nature Comm. 15, 4302 (2024).



4. I. E. Ochs et al., Preventing ash from poisoning proton–boron 11 fusion plasmas, Phys. Plasmas 32, 052506 (2025).



5. T. Rubin and N. J. Fisch, Ponderomotive barriers in rotating mirror devices using static fields, Phys. Plasmas 32, 062104 (2025).



6. E.J. Kolmes et al., Ion Mix Can Invert Centrifugal Traps, arXiv:2504.18634 (2025).



7. M. E. Mlodik et al., Drift-energy replacement effect in multi-ion magnetized plasma, Phys. Rev. Lett. 134, 205101 (2025).

Publication: [1] E. J. Kolmes, I. E. Ochs, and N. J. Fisch, Wave-Supported Hybrid Beam-Thermal pB11 Fusion, Phys. Plasma 29, 110701 (2022).<br><br>[2] I. E. Ochs et al., Improving the Feasibility of Economical Proton-Boron 11 Fusion via Alpha Channeling with a Hybrid Fast and Thermal Proton Scheme, Phys. Rev. E 106 055215 (2022).<br><br>[3] E. J. Kolmes, I. E. Ochs, and N. J. Fisch, Massive, Long-Lived Electrostatic Potentials in a Rotating Mirror Plasma, Nature Communications 15, 4302 (May, 2024).<br><br>[4] I. E. Ochs, E. J. Kolmes, and N. J. Fisch, Preventing ash from poisoning proton–boron 11 fusion plasmas, Physics of Plasmas 32, 052506 (2025).<br><br>[5] T. Rubin and N. J. Fisch, Ponderomotive barriers in rotating mirror devices using static fields, Physics of Plasmas 32, 062104 (2025).<br><br>[6] E.J. Kolmes, I. E. Ochs, and N. J. Fisch. Ion Mix Can Invert Centrifugal Traps, arXiv:2504.18634, submitted to Physical Review Letters (2025).<br><br>[7] M. E. Mlodik , E. J. Kolmes, and N. J. Fisch, Drift-energy replacement effect in multi-ion magnetized plasma, Physical Review Letters 134, 205101 (2025).<br><br>[8] J.-M. Rax, E. J. Kolmes, and N. J. Fisch, Efficiency and Physical Limitations of Adiabatic Direct Energy Conversion in Axisymmetric Fields, PRX Energy 4, 013007 (2025).<br><br>[9] M. E. Mlodik, V. R. Munirov, T. Rubin, and N. J. Fisch, Sensitivity of synchrotron radiation to the superthermal electron population in mildly relativistic plasma, Physics of Plasmas 30, 043301 (2023).<br><br>[10] I. E. Ochs, M. E. Mlodik, and N. J. Fisch, Electron tail suppression and effective collisionality due to synchrotron emission and absorption in mildly relativistic plasmas, Physics of Plasmas 31, 083303 (2024).<br>

Presenters

  • Nathaniel J Fisch

    Princeton University

Authors

  • Nathaniel J Fisch

    Princeton University

  • Alexander S Glasser

    Princeton University

  • Elijah J Kolmes

    Princeton University

  • Mikhail Mlodik

    Princeton University

  • Ian E Ochs

    Princeton University

  • Jean-Marcel Rax

    Ecole Polytechnique

  • Tal Rubin

    Princeton University