Electron Cyclotron Emission-Based Separatrix Identification in ITER with OMFIT Synthetic Modeling

POSTER

Abstract

Accurate determination of the separatrix location is essential for understanding edge plasma behavior and optimizing confinement in tokamaks, especially in next-generation devices such as ITER. In this study, a synthetic microwave diagnostics module was developed and implemented in the OMFIT framework to assess the feasibility of an ECE-based separatrix detection method in ITER plasmas. Simulations were carried out using ITER H-mode equilibrium scenarios with different plasma density profiles and different pedestal widths. The results show that the electron emission temperature profiles consistently exhibit an inversion pattern near the edge, with a well-defined minimum point that could serve as a proxy for the separatrix location. However, unlike in DIII-D, the minimum point in ITER is systematically offset by approximately 2 cm into the SOL, independent of density or pedestal width, which is within the radial resolution range (2–5 cm) determined by the 500 MHz channel spacing. While the method does not provide the exact separatrix location, it offers a reliable indicator of the boundary region and has potential applications for real-time boundary monitoring in ITER and other future fusion devices.

Publication: Electron Cyclotron Emission-Based Separatrix Identification in ITER with OMFIT Synthetic Modeling, submitted to Fusion Science and Technology

Presenters

  • Xiaoliang Li

    UC Davis

Authors

  • Xiaoliang Li

    UC Davis

  • Guanying Yu

    UC Davis

  • Yilun Zhu

    University of California, Davis

  • Neville C Luhmann

    University of California, Davis

  • William Tang

    PPPL