A predictive formula for the H-Mode separatrix density: Bridging regression and physics-based models across C-Mod, AUG and JET tokamaks

ORAL

Abstract

Understanding and predicting a core-edge integrated scenario is a major challenge on the path to building fusion power plants. A critical aspect of this challenge is predicting the electron density at the separatrix (ne,sep​), which plays a central role in balancing energy confinement, detachment achievement, and ELM suppression.

To address this, a database of H-mode separatrix density measurements from Alcator C-Mod, ASDEX Upgrade, and JET tokamaks was assembled using a consistent analysis method across all devices. This dataset was used to derive a regression scaling law based solely on engineering parameters, and the results were compared to predictions from the two-point model. The agreement found is notable: both the regression and model provide similar parameter dependencies and tokamak-specific multiplicative constants. In particular, regression analysis reveals that ne,sep ∝ p0,div0.2 ageo-0.5 Ip0.0. Thus, increasing the divertor neutral pressure (p0,div) leads to higher ne,sep​, while a larger plasma minor radius (ageo) reduces it. Notably, the plasma current (Ip) has a negligible impact on ne,sep​.

Building on this agreement, a predictive formula that combines the regression dependencies and the two-point model multiplicative constant is proposed. This formula is able to estimate ne,sep​ across the three machines within a factor of 1.5—a level of fidelity previously unmatched in the literature—paving the way for core-edge integrated scenario prediction.

Presenters

  • Davide Silvagni

    Max-Planck-Institut für Plasmaphysik

Authors

  • Davide Silvagni

    Max-Planck-Institut für Plasmaphysik

  • Ondrej Grover

    Max-Planck-Institute for Plasmaphysics

  • Adriano Stagni

    Consorzio RFX, Corso Stati Uniti 4, Padova, Italy, Consorzio RFX

  • Jerry W Hughes

    MIT Plasma Science and Fusion Center, Massachusetts Institute of Technology

  • Marco Andrés Miller

    MIT Plasma Science and Fusion Center, Massachusetts Institute of Technology

  • Bartosz Lomanowski

    Oak Ridge National Laboratory

  • Guido Ciraolo

    CEA, IRFM, CEA IRFM

  • Wouter Dekeyser

    KU Leuven

  • Michael G Dunne

    Max-Planck Institut für Plasmaphysik, Max–Planck–Institut fuer Plasmaphysik

  • Thomas H Eich

    Commonwealth Fusion Systems

  • Lorenzo Frassinetti

    Fusion Plasma Physics, EECS, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden

  • Carine Giroud

    United Kingdom Atomic Energy Authority, Culham Campus, Abingdon, UK

  • Tim Happel

    Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching, Germany

  • Ionut Jepu

    UKAEA

  • Arne Kallenbach

    Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching, Germany

  • Anu Kirjasuo

    VTT

  • Adam Q Kuang

    Commonwealth Fusion Systems

  • Francesco Latini

    Tuscia University

  • Teobaldo Luda di Cortemiglia

    Max-Planck Inst

  • David Moulton

    UK Atomic Energy Authority (UKAEA)

  • Ou Pan

    Max Planck Institute for Plasma Physics, Garching, Germany

  • Christian Perez von Thun

    Institute of Plasma Physics and Laser Microfusion (IPPLM)

  • Thomas Puetterich

    Max-Planck Institut für Plasmaphysik Division Plasma Dynamics, Max Planck Institute for Plasma Physics

  • Scott Silburn

    United Kingdom Atomic Energy Authority, UK Atomic Energy Authority (UKAEA)

  • Hongjuan Sun

    United Kingdom Atomic Energy Authority, Culham Campus, Abingdon, UK

  • Hartmut Zohm

    Max Planck Institute for Plasma Physics