On the development of robust real-time capable ICRF modeling via machine learning
ORAL · Invited
Abstract
[1] M. Brambilla, Plasma Phys. Controlled Fusion 41, 1 (1999).
[2] Á. Sánchez-Villar et al, EPS Conf. Proc. 47A, o5.104 (2023).
[3] Á. Sánchez-Villar et al, Nucl. Fusion (2024, submitted).
–
Publication: Á. Sánchez-Villar et al, 49th EPS Conf. Plasma Phys. 2023 O5.104
Á. Sánchez-Villar et al, Real-time capable modeling of ICRF heating on NSTX and WEST via
machine learning approaches, Nucl. Fusion 2024 (under review)
Presenters
-
Alvaro Sanchez-Villar
Princeton University / Princeton Plasma Physics Laboratory, Princeton Plasma Physics Laboratory
Authors
-
Alvaro Sanchez-Villar
Princeton University / Princeton Plasma Physics Laboratory, Princeton Plasma Physics Laboratory
-
Zhe Bai
Lawrence Berkeley National Laboratory
-
Nicola Bertelli
Princeton Plasma Physics Laboratory, Princeton University / Princeton Plasma Physics Laboratory
-
E. W. Bethel
San Francisco State University
-
Julien Hillairet
CEA, IRFM
-
Talita Perciano
Lawrence Berkeley National Laboratory
-
Syun'ichi Shiraiwa
Princeton University / Princeton Plasma Physics Laboratory
-
Gregory Marriner Wallace
MIT Plasma Science and Fusion Center, MIT PSFC
-
John Christopher Wright
MIT Plasma Science and Fusion Center, Massachusetts Institute of Technology