Determination of Plasma Density and Temperature Gradients through the X-ray Spectroscopy with Deep Learning
ORAL
Abstract
Citations:
[1] Mariscal, D. A. et al., Enhanced analysis of experimental x-ray spectra through deep learning. Phys. Plasmas 1 September 2022; 29 (9): 093901. https://doi.org/10.1063/5.0097777
–
Publication: N. F. Beier, H. Allison, P. C Efthimion, K. A. Flippo, L. Gao, S. B. Hansen, K. Hill, R. Hollinger, M. Logantha, Y. Musthafa, R. Nedbailo, V. Senthilkumaran, R. Shepherd, V. N. Shlyaptsev, H. Song, S. Wang, F. Dollar, J. J. Rocca, and A. E. Hussein Homogeneous, Micron-Scale High-Energy-Density Matter Generated by Relativistic Laser-Solid Interactions. Physical Review Letters 129,135001 (2022)
Presenters
-
Nicholas F Beier
University of Alberta
Authors
-
Nicholas F Beier
University of Alberta
-
Matthew Maurier
University of Alberta
-
Uriah Martinkus
University of Alberta
-
Bassam Nima
University of Alberta
-
Vigneshvar Senthilkumaran
University of Alberta
-
Hunter G Allison
University of California, Irvine
-
Yasmeen Musthafa
TAE Technologies
-
Mahek Logantha
University of California, Irvine
-
Philip Efthimion
Princeton Plasma Physics Laboratory
-
Lan Gao
PPPL
-
Kenneth W Hill
Princeton Plasma Physics Laboratory, Princeton University
-
Kirk A Flippo
Los Alamos National Lab, Los Alamos National Laboratory
-
Stephanie B Hansen
Sandia National Laboratories
-
Reed C Hollinger
Colorado State University
-
Ryan Nedbailo
Colorado State University
-
Shoujun Wang
Colorado State University
-
Vyacheslav N Shlyaptsev
Colorado State University
-
Ronnie Lee Shepherd
Lawrence Livermore Natl Lab
-
Franklin J Dollar
University of California, Irvine
-
Jorge J Rocca
Colorado State University
-
Amina E Hussein
Univ of Alberta