The role of the separatrix in establishing boundaries for operational regimes on Alcator C-Mod and prospects for projection to SPARC

ORAL

Abstract

A model describing operational boundaries based on separatrix plasma parameters (SepOS) [1] is validated with Alcator C-Mod data. The model defines boundaries in terms of separatrix parameters, both dimensionless and mapped to dimensional space, for the L-H transition, the L-mode density limit, and the ideal MHD limit. Edge Thomson Scattering (ETS) measurements of electron density, ne, and electron temperature, Te, as well as their gradient scale lengths are used for model validation. Measurements from ETS allow for consistent identification of the separatrix position by estimating Te at the separatrix, assuming Spitzer-Härm conductivity. For the typical toroidal magnetic field and plasma current, Bt = 5.4 T, IP = 0.8 MA, the C-Mod separatrix conditions correlate well with the SepOS boundaries. This work extends validation of the theory of SepOS boundaries to higher Bt, lending credibility to projections to SPARC. Generation of these boundaries for SPARC informs prediction of access to and avoidance of operational regimes, like I-mode and EDA H-mode, as opposed to Type-I ELMy H-mode, and limits, like the ideal MHD limit and the L-mode density limit. Estimates are made for values for the minimum ne at the separatrix, nesep, required for the L-H transition, as well as maximum values of nesep before an H-L back-transition or an L-mode density limit. Estimates for typical values of nesep, in H-mode enable higher fidelity predictions of achievable neped, important for core performance modeling.

[1] T. Eich et al 2021 Nucl. Fusion 61 086017

Presenters

  • Marco Andrés Miller

    MIT Plasma Science and Fusion Center, MIT PSFC

Authors

  • Marco Andrés Miller

    MIT Plasma Science and Fusion Center, MIT PSFC

  • Jerry W Hughes

    MIT Plasma Science and Fusion Center, Massachusetts Institute of Technology

  • Thomas Eich

    Commonwealth Fusion Systems

  • George R Tynan

    University of California, San Diego

  • Thomas Alfred John Body

    Commonwealth Fusion Systems

  • Davide Silvagni

    Max-Planck-Institut für Plasmaphysik

  • Ondrej Grover

    Max-Planck-Institute for Plasmaphysics

  • Adam Q Kuang

    Commonwealth Fusion Systems

  • Saskia Mordijck

    William & Mary

  • Amanda E Hubbard

    MIT Plasma Science and Fusion Center

  • Brian LaBombard

    MIT Plasma Science and Fusion Center, Massachusetts Institute of Technology MIT

  • Michael Robert Knox Wigram

    MIT Plasma Science and Fusion Center

  • Jamie Dunsmore

    MIT Plasma Science and Fusion Center

  • Dennis G Whyte

    Massachusetts Institute of Technology MIT