Investigation of >10 kT magnetization of hot dense plasmas in cylindrical implosions through x-ray dopant spectroscopy and benchmarked simulations

ORAL

Abstract

The application of a magnetic field to ICF implosions may assist in enhancing gain. Under extremely magnetized plasma conditions, the advantages are the suppression of heat losses in the transverse direction to the B-field, confinement of α particles in the target core, mitigation of Rayleigh-Taylor instabilities and relaxation of constraints on target implosion velocities [1].

We present results from a platform to study MHD effects in magnetized implosion experiments performed at the OMEGA-60 facility. A magnetic field of 30 T was applied to a cylindrical target using pulsed-power coils, reaching fields of the order of ~10 kT at maximum compression [2].

We use x-ray emission spectroscopy from Ar and Kr fuel dopants, in conjunction to a multi-zone model, to validate changes in core electron temperature and density between a magnetized and an unmagnetized implosion. The influence of resistive diffusion and extended-MHD terms on B-field compressibility are investigated. Finally, we conduct a preliminary analysis of laser plasma instabilities and CBET to address target preheat and laser energy coupling.

Publication: [1] C. A. Walsh et al., Plasma Phys. Control. Fusion 64, 025007 (2022), https://doi.org/10.1088/1361-6587/ac3f25
[2] M. Bailly-Grandvaux et al., Phys. Review Research 6, L012018 (2024), DOI: 10.1103/PhysRevResearch.6.L012018

Presenters

  • Edoardo Rovere

    Center for Energy Research, University of California San Diego, La Jolla, CELIA, University of Bordeaux

Authors

  • Edoardo Rovere

    Center for Energy Research, University of California San Diego, La Jolla, CELIA, University of Bordeaux

  • Ricardo Florido

    iUNAT-Departamento de Física, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria

  • Gabriel Pérez-Callejo

    Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, Valladolid

  • Chris A Walsh

    Lawrence Livermore National Laboratory

  • Christopher S McGuffey

    General Atomics

  • Joao J Santos

    University of Bordeaux

  • Francisco Suzuki-Vidal

    First Light Fusion

  • Christos Vlachos

    Université de Bordeaux-CNRS-CEA, Centre Lasers Intenses et Applications (CELIA), UMR 5107, Talence

  • Marco A Gigosos

    Departamento de Física Teórica, Atómica y Óptica,` Universidad de Valladolid, Valladolid

  • Nicolas Fefeu

    Université de Bordeaux-CNRS-CEA, Centre Lasers Intenses et Applications (CELIA), UMR 5107, Talence

  • Philip Bradford

    STFC UKRI

  • Roberto Claudio Mancini

    University of Nevada, Reno

  • Russell K Follett

    Laboratory for Laser Energetics - Rochester

  • Farhat N Beg

    University of California, San Diego, UC San Diego

  • Mathieu Bailly-Grandvaux

    University of California, San Diego