Isotope physics of DT plasmas in the core and edge of JET-ILW type-I ELMy H-modes
ORAL
Abstract
The plasma edge of D-T plasmas is found closer to D conditions than those in T. We analyse these differences using a pedestal toy model which allows to model full ELM cycles using a self-consistent transport reduction due to $E\timesB$ shearing coupled with a variable stability limit. Normally, transport modelling in the edge is under determined due to the unknown particle source. However, with the ELM frequency as additional measured quantity, we reduce the possible solutions for reproducing the measured pedestal temperature and density.
In the plasma core the new data allows us to improve our predictions for the core transport. This is possible due to the density variation which for the first time is available in T as well as in D-T. With such an extended parameter space for D, DT and T at the pedestal boundary, a more precise evaluation of the validity of transport predictions with different main ion masses made with TGLF-SAT2 can be provided. Additionally, we can quantify the core contribution to the mass dependence of the global confinement.
[1] FRASSINETTI, L. et al., Nuclear Fusion 63 (2023) 112009.
[2] SCHNEIDER, P. A. et al., Nuclear Fusion 63 (2023) 112010.
–
Presenters
-
Philip A Schneider
Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching, Germany
Authors
-
Philip A Schneider
Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching, Germany
-
Clemente Angioni
Max Planck Institute for Plasma Physics, Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching, Germany
-
Fulvio Auriemma
Consorzio RFX-CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA, Padova, Italy, CNR-ISTP, Corso Stati Uniti 4
-
Mathias Brix
United Kingdom Atomic Energy Authority, Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK
-
Josep Maria Fontdecaba
Laboratorio Nacional de Fusión Ciemat, E-28040 Madrid, Spain
-
Carine Giroud
United Kingdom Atomic Energy Authority, Culham Campus, Abingdon, UK, United Kingdom Atomic Energy Authority, Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK, UKAEA (United Kingdom Atomic Energy Authority), Culham Campus, Abingdon, Oxfordshire, OX14 3DB, UK
-
rafael henriques
Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
-
Athina Kappatou
Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching, Germany
-
David Keeling
United Kingdom Atomic Energy Authority, Culham Campus, Abingdon, UK, United Kingdom Atomic Energy Authority, Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK
-
Damian Bryan King
United Kingdom Atomic Energy Authority, Culham Campus, Abingdon, UK, United Kingdom Atomic Energy Authority, Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK
-
Jacopo Lombardo
Consorzio RFX-CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA, Padova, Italy, CNR-ISTP, Corso Stati Uniti 4
-
Rita Lorenzini
Consorzio RFX-CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA, Padova, Italy, CNR-ISTP, Corso Stati Uniti 4
-
Mikhail Maslov
United Kingdom Atomic Energy Authority, Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK
-
Sheena Menmuir
United Kingdom Atomic Energy Authority, Culham Campus, Abingdon, UK, United Kingdom Atomic Energy Authority, Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK
-
D. I. Réfy
HUN-REN Centre for Energy Research, Budapest, Hungary
-
Alex Thorman
United Kingdom Atomic Energy Authority, Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK