Evidence for radiative collapse and magnetic flux pile-up in a radiatively cooled magnetic reconnection experiment

ORAL

Abstract

The Magnetic Reconnection on Z (MARZ) platform achieves strong cooling in a magnetic reconnection experiment driven by pulsed power. Two inverse aluminum wire arrays, simultaneously fielded on the Z machine (20 MA peak current, 300 ns rise time, Sandia National Labs), generate oppositely-directed supersonic and super-Alfvénic plasma flows with anti-parallel magnetic fields. Interaction of the magnetized flows generates a reconnection layer (SL ≈ 120, normalized reconnection rate ≈ 0.3), where line and recombination-bremsstrahlung losses provide a cooling rate much larger than the Alfvénic transit rate (τcool-1/ τA-1 ≈ 50). Time-resolved characterization of the rapidly-falling >1keV X ray emission, and simultaneously rising visible emission from the reconnection layer, demonstrates decreasing layer temperature and rising density, indicative of radiative collapse. X ray diode and spectroscopic measurements provide constraints on the layer temperature. The reconnection layer is further visualized using multi-frame self-emission imaging of optical (540-650 nm) emission. These images show planar discontinuous regions of enhanced emission upstream of the reconnection layer, providing evidence for shock-mediated magnetic flux pile-up, consistent with the super-Alfvénic inflows.

*SNL is managed and operated by NTESS under DOE NNSA contract DE-NA0003525

Publication: [1] R. Datta, K. Chandler, C. E. Myers, J. P. Chittenden, A. J. Crilly, C. Aragon, D. J. Ampleford, J. T. Banasek, A. Edens, W. R. Fox, S. B. Hansen, E. C. Harding, C. A. Jennings, H. Ji, C. C. Kuranz, S. V. Lebedev, Q. Looker, S. G. Patel, A. Porwitzky, G. A. Shipley, D. A. Uzdensky, D. A. Yager-Elorriaga, J.D. Hare (2024). "Plasmoid Formation and Strong Radiative Cooling in a Driven Magnetic Reconnection Experiment." Physical Review Letters. https://doi.org/10.1103/physrevlett.132.155102

[2] R. Datta, K. Chandler, C. E. Myers, J. P. Chittenden, A. J. Crilly, C. Aragon, D. J. Ampleford, J. T. Banasek, A. Edens, W. R. Fox, S. B. Hansen, E. C. Harding, C. A. Jennings, H. Ji, C. C. Kuranz, S. V. Lebedev, Q. Looker, S. G. Patel, A. Porwitzky, G. A. Shipley, D. A. Uzdensky, D. A. Yager-Elorriaga, J.D. Hare (2024). "Radiatively cooled magnetic reconnection experiments driven by pulsed power." Physics of Plasmas. https://doi.org/10.1063/5.0201683

[1] R. Datta, A. J. Crilly, J. P. Chittenden, S. Chowdhry, K. Chandler, N. Chaturvedi, C. E. Myers, W. R. Fox, S. B. Hansen, C. A. Jennings, H. Ji, C. C. Kuranz, S. V. Lebedev, D. A. Uzdensky, J. D. Hare (2024). "Simulations of radiatively cooled magnetic reconnection driven by pulsed-power." Journal of Plasma Physics. https://doi.org/10.1017/S0022377824000448

Presenters

  • Rishabh Datta

    MIT PSFC, Massachusetts Institute of Technology

Authors

  • Rishabh Datta

    MIT PSFC, Massachusetts Institute of Technology

  • Katherine Chandler

    Sandia National Laboratories

  • Jeremy P Chittenden

    Imperial College London

  • Aidan J Crilly

    Imperial College London

  • William Randolph Fox

    Princeton Plasma Physics Laboratory, Princeton Plasma Physics Laboratory (PPPL)

  • Stephanie B Hansen

    Sandia National Laboratories

  • Lansing S Horan

    Massachusetts Institute of Technology

  • Christopher Jennings

    Sandia National Laboratories

  • Hantao Ji

    Princeton University

  • Carolyn C Kuranz

    University of Michigan

  • Sergey V Lebedev

    Imperial College London

  • Clayton E Myers

    Commonwealth Fusion Systems

  • Dmitri A Uzdensky

    Univ. Colorado

  • David A Yager-Elorriaga

    Sandia National Laboratories

  • Jack D Hare

    MIT PSFC