Influence of mass ablation on ignition and burn propagation in layered implosions and implications for capsule design
POSTER
Abstract
Ignition in layered ICF implosions involves balancing energy losses into the hot spot from radiation and thermal conduction with energy from PdV work, fusion reaction products, and the enthalpy associated with ablation of fuel into the hot spot (which can lead to 4x larger ablative inflows than previous estimates). The authors have shown analytically and computationally that the rate of mass ablation depends upon the thermodynamic state of the dense fuel, which ultimately governs mass inflow, controls hot spot temperature, and modifies the burn propagation dynamics.* A recent study incorporating this new understanding points to novel design paths for improved burn performance in layered implosions. This paper will discuss some of these new ideas as well as some of the associated design tradeoffs.
*W. S. Daughton, B. J. Albright, S. M. Finnegan, Brian M. Haines, J. L., Kline, J. P. Sauppe, and J. M. Smidt, Phys. Plasmas 30, 012704 (2023).
*W. S. Daughton, B. J. Albright, S. M. Finnegan, Brian M. Haines, J. L., Kline, J. P. Sauppe, and J. M. Smidt, Phys. Plasmas 30, 012704 (2023).
Presenters
-
Brian J Albright
Los Alamos Natl Lab, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
Authors
-
Brian J Albright
Los Alamos Natl Lab, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
-
William S Daughton
Los Alamos Natl Lab
-
Brian M Haines
Los Alamos National Laboratory, LANL, Los Alamos Natl Lab
-
Nelson M Hoffman
Los Alamos National Laboratory
-
John J Kuczek
Los Alamos National Lab
-
Kevin D Meaney
LANL, Los Alamos National Laboratory
-
Joshua P Sauppe
LANL, Los Alamos National Laboratory, Los Alamos Natl Lab