APS Logo

Ponderomotive scaling of laser-accelerated electrons using a machine learning approach

POSTER

Abstract

The ponderomotive scaling of hot electrons plays an essential role in the understanding of laser- plasma interactions, e.g., the absorption of a high intensity laser by a solid target. Many applications, including laser-driven particle acceleration, radiography and fast ignition rely on the characteristics of these fast electrons generated from such interactions. While the general ponderomotive scaling of the electron temperature with the laser intensity is well recognized, it is also known that in some configurations of the wave-particle interaction, where a background field or a second wave exists, super-ponderomotive electrons can be generated. The Hamiltonian systems underlying these configurations are of stochastic nature, thus making the analysis difficult. Here we aim to use a machine learning approach to provide a surrogate of the particle dynamics. Our neural network surrogate employs symplectic constraint to ensure the robustness of the model prediction and has the capability to embed the major parameters of the interactions. We train such surrogate models for various interaction configurations and compare their predictions of the characteristics of hot electrons. The result will also be compared to previous ponderomotive scalings from an empirical or analytical footing.

Presenters

  • Chengkun Huang

    Los Alamos Natl Lab, Los Alamos National Laboratory, Los Alamos, NM 87544, USA

Authors

  • Chengkun Huang

    Los Alamos Natl Lab, Los Alamos National Laboratory, Los Alamos, NM 87544, USA

  • Brian J Albright

    Los Alamos Natl Lab, Los Alamos National Laboratory, Los Alamos, NM 87544, USA

  • Scott Luedtke

    Los Alamos Natl Lab., Los Alamos National Laboratory, Los Alamos, NM 87544, USA

  • Brandon M Medina

    Los Alamos National Laboratory, Los Alamos National Laboratory, Los Alamos, NM 87544, USA

  • Sasi Palaniyappan

    Los Alamos Natl Lab, Los Alamos National Laboratory, Los Alamos National Laboratory, Los Alamos, NM 87544, USA, Los Alamos National Lab

  • Alexander G Seaton

    Los Alamos National Laboratory, Los Alamos National Laboratory, Los Alamos, NM 87544, USA

  • David Stark

    LANL, Los Alamos National Laboratory, Los Alamos, NM 87544, USA

  • Qi Tang

    Los Alamos National Laboratory

  • Lin Yin

    Los Alamos Natl Lab

  • Yanzeng Zhang

    Los Alamos National Laboratory