APS Logo

Fundamental Plasmas: Modeling and Machine Learning

ORAL · CO04 · ID: 1746220





Presentations

  • Diffusion of three-dimensional one-component plasmas in an electric field

    ORAL

    Publication: Ivlev, A. V., et al (2008). First observation of electrorheological plasmas. Physical Review Letters, 100(9). https://doi.org/10.1103/PhysRevLett.100.095003<br>Shakoori, M. A., He, M., Shahzad, A., & Khan, M. (2022). Diffusion coefficients of electrorheological complex (dusty) plasmas. Journal of Molecular Modeling, 28(12). https://doi.org/10.1007/s00894-022-05394-3<br>Shakoori, M. A., He, M., Shahzad, A., & Khan, M. (2023). Tuning the structure and transport properties of complex plasmas using electric field. Physica Scripta, 98(1). https://doi.org/10.1088/1402-4896/aca6b2

    Presenters

    • Muhammad A Shakoori

      China University of Mining and Technology

    Authors

    • Muhammad A Shakoori

      China University of Mining and Technology

    • Misbah Khan

      School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China

    • Haipeng Li

      School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China

    • Maogang He

      School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China

    • aamir shahzad

      Department of physics, government college university Faisalabad, Pakistan

    View abstract →

  • Decay of Mechanically Driven Axial Counter-Current in a High Speed Rotating Cylinder Using DSMC Simulations

    ORAL

    Publication: 1. PRADHAN, S. & KUMARAN, V. 2011 The generalized Onsager model for the secondary flow in a high-speed rotating cylinder. J. Fluid Mech. 686, 109.<br><br>2. KUMARAN, V & PRADHAN, S. 2014 The generalized Onsager model for a binary gas mixture. J. Fluid Mech. 753, 307.<br><br>3. Sahadev Pradhan, & Viswanathan Kumaran 2015 Separation Analysis in a High-Speed Rotating Cylinder for a Binary Gas Mixture., 68th Annual Meeting of the APS Division of Fluid Dynamics Volume 60, Number 21 Sunday–Tuesday, November 22–24, 2015; Boston, Massachusetts.<br><br>4. Sahadev Pradhan, 2016 The Generalized Onsager Model and DSMC Simulations of High-Speed Rotating Flow with Swirling Feed., 69th Annual Gaseous Electronics Conference, Volume 61, Number 9, Monday–Friday, October 10–14, 2016; Bochum, Germany.<br><br>5. Sahadev Pradhan, 2016 The generalized Onsager model and DSMC simulations of high-speed rotating flows with product and waste baffles., 69th Annual Gaseous Electronics Conference, Volume 61, Number 9, Monday–Friday, October 10–14, 2016; Bochum, Germany.<br><br>6. Sahadev Pradhan, 2016 DSMC simulations of leading edge flat-plate boundary layer flows at high Mach number., 69th Annual Gaseous Electronics Conference, Volume 61, Number 9, Monday–Friday, October 10–14, 2016; Bochum, Germany.<br><br>7. Sahadev Pradhan, 2016 Thin film deposition using rarefied gas jet., 69th Annual Gaseous Electronics Conference, Volume 61, Number 9, Monday–Friday, October 10–14, 2016; Bochum, Germany.<br><br>8. S. Pradhan, 2016 Analysis of High-Speed Rotating Flow in 2D Polar (r - theta) Coordinate., APS April Meeting 2016 Volume 61, Number 6 Saturday–Tuesday, April 16–19, 2016; Salt Lake City, Utah.<br><br>9. Sahadev Pradhan, 2017 Analysis of high-speed rotating flow inside gas centrifuge casing., 70th Annual Meeting of the APS Division of Fluid Dynamics Volume 62, Number 14 Sunday–Tuesday, November 19–21, 2017; Denver, Colorado.<br><br>10. Sahadev Pradhan, 2017 Binary gas mixture in a high-speed channel., 70th Annual Meeting of the APS Division of Fluid Dynamics Volume 62, Number 14 Sunday–Tuesday, November 19–21, 2017; Denver, Colorado.<br><br>11. Sahadev Pradhan, 2017 Composite reinforced metallic cylinder for high-speed rotation., 70th Annual Meeting of the APS Division of Fluid Dynamics Volume 62, Number 14 Sunday–Tuesday, November 19–21, 2017; Denver, Colorado.<br><br>12. Sahadev Pradhan, 2017 DSMC Simulations of High Mach Number Taylor-Couette Flow., 70th Annual Meeting of the APS Division of Fluid Dynamics Volume 62, Number 14 Sunday–Tuesday, November 19–21, 20

    Presenters

    • Dr. Sahadev Pradhan

      Bhabha Atomic Research Centre

    Authors

    • Dr. Sahadev Pradhan

      Bhabha Atomic Research Centre

    View abstract →

  • Explicit relativistic energy-conserving PIC scheme and conservative particle down-sampling

    ORAL

    Publication: A. Gonoskov, Explicit energy-conserving modification of relativistic PIC method, arXiv:2302.01893 (2023);<br>A. Gonoskov, Agnostic conservative down-sampling for optimizing statistical representations and PIC simulations, Comput. Phys. Commun. 271, 108200 (2022).

    Presenters

    • Arkady Gonoskov

      University of Gothenburg

    Authors

    • Arkady Gonoskov

      University of Gothenburg

    View abstract →

  • Accelerating Kinetic Simulations of Electrostatic Plasmas with Reduced-Order Modeling

    ORAL

    Presenters

    • Ping-Hsuan Tsai

      University of Illinois at Urbana, Champaign

    Authors

    • Ping-Hsuan Tsai

      University of Illinois at Urbana, Champaign

    • Seung Whan Chung

      Lawrence Livermore National Laboratory

    • Debojyoti Ghosh

      Lawrence Livermore Natl Lab, Lawrence Livermore National Laboratory

    • Youngsoo Choi

      Lawrence Livermore National Laboratory

    • Jonathan L Belof

      Lawrence Livermore National Laboratory

    View abstract →

  • Learning the Dynamics of a 1D Plasma Electrostatic Sheet Model with Graph Neural Networks

    ORAL

    Publication: D. D. Carvalho, D. R. Ferreira, and L. O. Silva, Graph Neural Networks for Kinetic Simulations of a 1D Plasma Sheet Model (in preparation)

    Presenters

    • Diogo D Carvalho

      GoLP/IPFN, IST, ULisboa, Portugal

    Authors

    • Diogo D Carvalho

      GoLP/IPFN, IST, ULisboa, Portugal

    • Diogo R Ferreira

      IPFN, IST, ULisboa, Portugal

    • Luis O Silva

      Instituto Superior Tecnico, GoLP/IPFN, IST, ULisboa, Portugal

    View abstract →

  • Data-driven, multi-moment fluid modeling of Landau damping using machine learning

    ORAL

    Publication: [1] W. J. Cheng, H. Y. Fu, L. Wang, C. Dong, Y. Q. Jin, M. L. Jiang, J. Y. Ma, Y. L. Qin, and K. X. Liu, Data-driven, multi-moment fluid modeling of Landau damping, Computer Physics Communications 282, 108538 (2023). arXiv:2209.04726.<br><br>[2] Y. Qin, J. Ma, M. Jiang, C. Dong, H. Fu, L. Wang, W. Cheng, and Y. Jin, Data-driven Modeling of Landau Damping by Physics-Informed Neural Networks, Phys. Rev. Research, in press. arXiv:2211.01021.

    Presenters

    • Chuanfei Dong

      Boston University

    Authors

    • Chuanfei Dong

      Boston University

    • Haiyang Fu

      Fudan University

    • Liang Wang

      Princeton University

    View abstract →

  • Merging Ensemble Simulations and High-repetition-rate experiments for Data-Driven Atomic Physics Studies

    ORAL

    Presenters

    • Derek Mariscal

      Lawrence Livermore Natl Lab, Lawrence Livermore National Laboratory

    Authors

    • Derek Mariscal

      Lawrence Livermore Natl Lab, Lawrence Livermore National Laboratory

    • Blagoje Z Djordjevic

      Lawrence Livermore Natl Lab

    • Bruce A Hammel

      Lawrence Livermore Natl Lab

    • Madison E Martin

      Lawrence Livermore Natl Lab

    • Matthew P Hill

      Lawrence Livermore National Laboratory, Lawrence Livermore Natl Lab

    • Richard A London

      Lawrence Livermore Natl Lab

    • Andreas J Kemp

      LLNL

    • Ronnie L Shepherd

      Lawrence Livermore Natl Lab

    • Mike J MacDonald

      Lawrence Livermore Natl Lab

    • Edward V Marley

      Lawrence Livermore Natl Lab, Lawrence Livermore National Laboratory

    • Elizabeth S Grace

      Lawrence Livermore National Laboratory

    • Kelly K Swanson

      Lawrence Livermore National Laboratory

    • Tammy Ma

      Lawrence Livermore Natl Lab

    View abstract →

  • Machine Learning Multi-Scale Plasma Chemistry

    ORAL

    Presenters

    • Li Lin

      George Washington University

    Authors

    • Li Lin

      George Washington University

    • Sophia Gershman

      Princeton Plasma Physics Laboratory

    • Yevgeny Raitses

      US Dept of Energy-Germantown, Princeton Plasma Physics Laboratory, Princeton Plasma Physics Laboratory, Princeton, NJ 08540, Princeton Plasma Physics Laboratory, Princeton University

    • Michael Keidar

      George Washington University

    View abstract →

  • Nonthermal Proton-Boron11 Fusion

    ORAL

    Presenters

    • Nathaniel J Fisch

      Princeton University

    Authors

    • Nathaniel J Fisch

      Princeton University

    • Ian E Ochs

      Princeton University

    • Elijah J Kolmes

      Princeton University

    • Mikhail E Mlodik

      Princeton University

    • Tal Rubin

      Princeton University

    • Vadim R Munirov

      Princeton University

    • Jean M Rax

      Ecole Polytechnique

    View abstract →