ICF/HED/FPS/Beams: Machine Learning
ORAL · BO07 · ID: 1746296
Presentations
-
Stable Machine-Learning Models for Fluid Simulations: A Geometry-Agnostic Approach to Nonlinear Kinetic Effects
ORAL
–
Publication: 1. Joglekar, A. S. & Thomas, A. G. R. Machine learning of hidden variables in multiscale fluid simulation. Submitted to IOP Machine Learning: Science and Technology. Preprint at https://doi.org/10.48550/arXiv.2306.10709 (2023).<br>2. Joglekar, A. S. & Thomas, A. G. R. ADEPT - Automatic Differentiation Enabled Plasma Transport. Invited Talk - Synergy of Scientific and Machine Learning Modeling Workshop - ICML (2023).
Presenters
-
Archis S Joglekar
Ergodic LLC
Authors
-
Archis S Joglekar
Ergodic LLC
-
Alexander G Thomas
University of Michigan
-
-
Transformation for Physical Interpretability and Data Refinement in a Machine-Learned NLTE Model of ICF Simulation
ORAL
–
Publication: [1] G. Kluth, et. al., Physics of Plasmas 27 052707 (2020).<br>[2] Michael D. Vander Wal, et. al., Machine Learning with Applications 8 100308 (2022).
Presenters
-
Min Sang Cho
Lawrence Livermore National Laboratory
Authors
-
Min Sang Cho
Lawrence Livermore National Laboratory
-
Paul E Grabowski
Lawrence Livermore National Laboratory
-
Michael J Barrow
Lawrence Livermore National Laboratory
-
Jayram S Thathachar
Lawrence Livermore National Laboratory
-
Peer-Timo Bremer
Lawrence Livermore National Laboratory
-
Kowshik Thopalli
Lawrence Livermore National Laboratory
-
Hai P Le
Lawrence Livermore Natl Lab
-
Howard A Scott
Lawrence Livermore Natl Lab, Lawrence Livermore National Laboratory
-
Mark E Foord
Lawrence Livermore Natl Lab
-
Jim A Gaffney
Lawrence Livermore National Laboratory
-
-
Prospects for statistical tests of strong-field quantum electrodynamics with high-intensity lasers.
ORAL
–
Publication: The current work is under submission and a preprint can be found on arXiv : <br><br>> Olofsson, Christoffer, and Arkady Gonoskov. "Prospects for statistical tests of strong-field quantum electrodynamics with high-intensity lasers." arXiv preprint arXiv:2303.00568 (2023).
Presenters
-
Christoffer J Olofsson
Department of Physics, University of Gothenburg
Authors
-
Christoffer J Olofsson
Department of Physics, University of Gothenburg
-
Arkady Gonoskov
Gothenburg University, Department of Physics, University of Gothenburg
-
-
Quantifying and Reducing Uncertainty in Inertial Confinement Fusion Experiments Using Optimal Experimental Design
ORAL
–
Presenters
-
Codie Y Fiedler Kawaguchi
Los Alamos National Laboratory, University of Michigan, University of Michigan
Authors
-
Codie Y Fiedler Kawaguchi
Los Alamos National Laboratory, University of Michigan, University of Michigan
-
Kirk A Flippo
Los Alamos Natl Lab
-
Alexander M Rasmus
Los Alamos National Laboratory, Los Alamos National Lab
-
Elizabeth C Merritt
Los Alamos National Laboratory
-
Eric Johnsen
University of Michigan
-
Xun Huan
University of Michigan
-
-
Optimizing New Inertial Confinement Fusion Designs Under Uncertainty
ORAL
–
Presenters
-
Bogdan Kustowski
Lawrence Livermore National Laboratory
Authors
-
Bogdan Kustowski
Lawrence Livermore National Laboratory
-
Kelli D Humbird
Lawrence Livermore Natl Lab, Lawrence Livermore National Laboratory
-
Eugene Kur
Lawrence Livermore National Laboratory, LLNL
-
Jim A Gaffney
Lawrence Livermore National Laboratory
-
Michael K Kruse
Lawrence Livermore Natl Lab
-
Ryan C Nora
Lawrence Livermore National Laboratory
-
Brian K Spears
LLNL
-
-
Laser-Direct-Drive Cryogenic Implosion Performance on OMEGAand Improvements to Illumination Uniformity and Ablation Pressure
ORAL
–
Presenters
-
Cliff A Thomas
University of Rochester
Authors
-
Cliff A Thomas
University of Rochester
-
Christian Stoeckl
University of Rochester
-
Michael J Rosenberg
Laboratory for Laser Energetics, University of Rochester, University of Rochester
-
James P Knauer
University of Rochester
-
Wolfgang R Theobald
Focused Energy
-
Sean P Regan
Laboratory for Laser Energetics, University of Rochester
-
TImothy J Collins
University of Rochester
-
Valeri N Goncharov
University of Rochester, Laboratory for Laser Energetics
-
Riccardo Betti
Laboratory for Laser Energy, Rochester, NY, USA., University of Rochester, LLE, Univ of Rochester
-
Christopher Deeney
Laboratory for Laser Energetics, Laboratory for Laser Energetics, University of Rochester, University of Rochester
-
Michael Campbell
Laboratory for Laser Energetics, MCM Consulting, University of Rochester
-
Kenneth Anderson
Laboratory for Laser Energetics, U. of Rochester, Laboratory for Laser Energetics
-
Katelynn Bauer
University of Rochester
-
Mark J Bonino
Laboratory for Laser Energetics, University of Rochester, Laboratory for Laser Energetics, University of Rochester
-
Duc M Cao
University of Rochester, Laboratory for Laser Energetics, U. Rochester/LLE
-
Stephen Craxton
Laboratory for Laser Energetics, University of Rochester, University of Rochester
-
Dana H Edgell
LLE
-
Reuben Epstein
University of Rochester
-
Chad J Forrest
University of Rochester
-
Vladimir Glebov
Lab for Laser Energetics, University of Rochester
-
Varchas Gopalaswamy
Laboratory for Laser Energetics - Rochester
-
David R Harding
Laboratory for Laser Energetics, Laboratory for Laser Energetics, University of Rochester, University of Rochester, Laboratory for Laser Energetics, University of Rochester
-
Igor V Igumenshchev
Lab for Laser Energetics
-
Steven T Ivancic
Lab for Laser Energetics
-
Douglas W Jacobs-Perkins
University of Rochester
-
Roger T Janezic
Laboratory for Laser Energetics, University of Rochester
-
Joe Kwiatkowski
University of Rochester
-
Aarne Lees
University of Rochester
-
Frederic J Marshall
University of Rochester
-
Michael Michalko
Laboratory for Laser Energetics, University of Rochester
-
Dhrumir P Patel
University of Rochester
-
Jonathan Peebles
University of Rochester
-
P. B Radha
Laboratory for Laser Energetics - Rochester, University of Rochester, Laboratory for Laser Energetics
-
Hans G Rinderknecht
Laboratory for Laser Energetics - Rochester
-
Siddharth Sampat
Laboratory for Laser Energetics, University of Rochester
-
Thomas C Sangster
University of Rochester
-
Rahul C Shah
Laboratory for Laser Energetics - Rochester
-
Conner A Williams
University of Rochester
-
-
Direct-Drive Implosion Performance Optimization Using Gaussian Process Modeling and Reinforcement Learning
ORAL
–
Presenters
-
Rahman Ejaz
Laboratory for Laser Energetics, University of Rochester
Authors
-
Rahman Ejaz
Laboratory for Laser Energetics, University of Rochester
-
Varchas Gopalaswamy
Laboratory for Laser Energetics - Rochester
-
Aarne Lees
University of Rochester
-
Duc M Cao
University of Rochester, Laboratory for Laser Energetics, U. Rochester/LLE
-
Soumyendu Sarkar
HP Labs, Hewlett Packard Enterprise
-
Christopher Kanan
Department of Computer Science, University of Rochester
-
-
Using Deep Learning to Investigate Laboratory Astrophysics Experiments Through Collective Thomson Scattering Analysis
ORAL
–
Presenters
-
Michael Pokornik
University of California, San Diego, Lawrence Livermore National Laboratory, Livermore, CA
Authors
-
Michael Pokornik
University of California, San Diego, Lawrence Livermore National Laboratory, Livermore, CA
-
Mario Manuel
General Atomics - San Diego
-
Kasper Moczulski
University of Rochester
-
Petros Tzeferacos
University of Rochester
-
Frederico Fiuza
Instituto Superior Tecnico (Portugal)
-
Farhat Beg
University of California, San Diego, University of California San Diego, Center for Energy Research UC San Diego, San Diego, CA 92093
-
Alexey V Arefiev
University of California, San Diego
-
E. R Tubman
Imperial College London, Imperial College, Imperial College London, London, UK
-
David Larson
Lawrence Livermore Natl Lab
-
Bradley B Pollock
Lawrence Livermore Natl Lab
-
George F Swadling
Lawrence Livermore Natl Lab
-
Drew Higginson
Lawrence Livermore Natl Lab, Lawrence Livermore National Laboratory
-
Hye-Sook Park
LLNL
-
-
Computational acceleration of ICF capsule simulations through GPU-enabled plasma-physics modules
ORAL
–
Presenters
-
Alejandro Campos
Lawrence Livermore Natl Lab
Authors
-
Alejandro Campos
Lawrence Livermore Natl Lab
-
Thomas M Stitt
Lawrence Livermore National Laboratory
-
Philip Mocz
Lawrence Livermore National Laboratory
-
Aaron A Skinner
Lawrence Livermore National Laboratory
-
Arturo Vargas
Lawrence Livermore National Laboratory
-
Kristi Belcher
Lawrence Livermore National Laboratory
-
David E Stevens
Lawrence Livermore National Laboratory
-
John P Grondalski
Lawrence Livermore Natl Lab
-
Kenneth Weiss
Lawrence Livermore National Laboratory
-
Robert N Rieben
Lawrence Livermore Natl Lab
-
-
Machine-learning based X-ray spectrometer for High Repetition Rate Analysis of Betatron Radiation
ORAL
–
Presenters
-
Nicholas F Beier
University of Alberta
Authors
-
Nicholas F Beier
University of Alberta
-
Vigneshvar Senthilkumaran
University of Alberta
-
Shubho Mohajan
Univ of Alberta
-
Ester Kriz
McGill University
-
Ghassan Zeraouli
Colorado State University, Lawrence Livermore National Laboratory, Colorado State University
-
Sylvain Fourmaux
INRS-EMT, Institut National de la Recherche Scientifique– Énergie Matériaux et Télécommunications (INRS-EMT), INRS - Energie et Materiaux
-
Francois Legare
INRS - Energie et Materiaux
-
Tammy Ma
Lawrence Livermore Natl Lab
-
Amina E Hussein
University of Alberta, Canada, Univ of Alberta
-
-
Optimization of Polar Direct Drive Illumination for Mega-Joule Laser Facilities
ORAL
–
Publication: We are drafting a publication of the same name to be submitted around the time of the 2023 APS DPP meeting.
Presenters
-
Duncan Barlow
Universite de Bordeaux
Authors
-
Duncan Barlow
Universite de Bordeaux
-
Arnaud Colaitis
University of Rochester, LLE
-
Diego Viala
University of Bordeaux
-
Julien Mathiaud
Universite de Bordeaux
-
Jean-Luc Feugeas
Universite de Bordeaux
-
Matthew Streeter
Queen's University Belfast
-
-
Machine Learning Design Optimization of Inner Shells on Double Shell Target Capsules
ORAL
–
Presenters
-
Nomita Vazirani
Los Alamos National Lab
Authors
-
Nomita Vazirani
Los Alamos National Lab
-
Ryan F Sacks
LANL
-
Brian M Haines
Los Alamos National Laboratory, LANL, Los Alamos Natl Lab
-
Mike Grosskopf
Los Alamos National Laboratory
-
David Stark
Los Alamos National Laboratory
-
Paul A Bradley
Los Alamos Natl Lab
-
-
Predicting N221204 observables from an ensemble of N210808 simulations
ORAL
–
Presenters
-
Michael K Kruse
Lawrence Livermore Natl Lab
Authors
-
Michael K Kruse
Lawrence Livermore Natl Lab
-
Eugene Kur
Lawrence Livermore National Laboratory, LLNL
-
Jim A Gaffney
Lawrence Livermore National Laboratory
-
Kelli D Humbird
Lawrence Livermore Natl Lab, Lawrence Livermore National Laboratory
-
Bogdan Kustowski
Lawrence Livermore National Laboratory
-
Ryan C Nora
Lawrence Livermore National Laboratory
-
Brian K Spears
LLNL
-
-
Enhancing Neutron Yield in Cylindrical Target Designs Through Multi-Fidelity Bayesian Optimization
ORAL
–
Presenters
-
William Gammel
Los Alamos National Laboratory
Authors
-
William Gammel
Los Alamos National Laboratory
-
Joshua P Sauppe
LANL, Los Alamos National Laboratory, Los Alamos Natl Lab
-
Kevin K Lin
University of Arizona
-