APS Logo

Energetic ion experiments with three-ion ICRF scenarios in non-active plasmas at JET

POSTER

Abstract

Significant progress with the development of three-ion ICRF scenarios [1,2] in support of the ITER Research Plan has been recently achieved [3]. We report the results of energetic ion experiments at JET, where the three-ion 4He-(3He)-H scheme was applied for heating non-active H-4He plasmas, both on-axis and off-axis [4]. The spatial profile of energetic 3He ions was controlled by varying the ICRF antenna phasing, resulting in significant differences in MHD behaviour and sawtooth dynamics. Our results confirm that the three-ion ICRF scenario can be applied to control the radial profile of the safety factor and sustain plasmas with an inverted q-profile at JET, complementing earlier observations of its application in D-3He plasmas [5]. Another important highlight of the JET experiments in H-4He plasmas reported here is the demonstration of the capability to measure simultaneously both He isotopes, n(4He)/ne ≈ 5-15% and n(3He)/ne ≈ 0.2%, using the highresolution sub-divertor gas spectroscopy [6].

In this contribution, we also report on the successful application of the three-ion 9Be/22Ne/Ar-(4He)-H ICRF scheme at JET. This scenario makes use of intrinsic 9Be (Z/A ≈ 0.44) and extrinsic impurities with a similar charge-to-mass ratio, e.g. 22Ne and Ar (Z/A ≈ 0.45), to optimize the efficiency of ICRF absorption by a small amount of 4He ions in hydrogen plasmas [3]. JET experimental results confirm that an additional injection of a very small amount of 22Ne impurities is beneficial for maximizing the population of MeV-range 4He ions with ICRF in the plasma (n(4He)/ne ≈ 0.5%), as evidenced by gamma-ray spectroscopy [7]. In the absence of a direct control of the level of 9Be impurities, an additional seeding of 22Ne or Ar impurities is a promising technique that can be also applied in future ITER plasmas.

Publication: [1] Ye.O. Kazakov et al., Nature Physics 13, 973 (2017)<br>[2] Ye.O. Kazakov et al., Nucl. Fusion 60, 112013 (2020)<br>[3] Ye.O. Kazakov et al., Phys. Plasmas 28, 020501 (2021)<br>[4] M. Schneider et al., EPJ Web. Conf. 157, 03046 (2017)<br>[5] M. Dreval et al., Nucl. Fusion 62, 056001 (2022)<br>[6] S. Vartanian et al., Fusion Eng. Design 170, 112511 (2021)<br>[7] M. Nocente et al., Plasma Phys. Control. Fusion 62, 014015 (2020)

Presenters

  • Yevgen Kazakov

    LPP-ERM/KMS, Laboratory for Plasma Physics, LPP-ERM/KMS, Brussels, Belgium, Laboratory for Plasma Physics, LPP-ERM/KMS, TEC Partner, Brussels, Belgium

Authors

  • Yevgen Kazakov

    LPP-ERM/KMS, Laboratory for Plasma Physics, LPP-ERM/KMS, Brussels, Belgium, Laboratory for Plasma Physics, LPP-ERM/KMS, TEC Partner, Brussels, Belgium

  • Massimo Nocente

    Dipartimento di Fisica, Università di Milano-Bicocca, Milan, Italy, Institute for Plasma Science and Technology, CNR, via Cozzi 53, 20125 Milan, Italy

  • Jeronimo Garcia

    CEA, CEA, IRFM, F-13108 Saint Paul Lez Durance, France, CEA, IRFM, Saint-Paul-lez-Durance, France, CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France, CEA, Cadarache, France, CEA, IRFM, F-13108 Saint-Paul-lex-Durance, France, CEA, IRFM, Saint-Paul-Lez-Durance, France, CEA, IRFM, F-13108 St-Paul-Lez-Durance, France

  • Vasili Kiptily

    UKAEA, CCFE, Culham Science Centre, Abingdon, UK, UKAEA, Culham Science Centre, Abingdon, OX143DB, United Kingdom, UKAEA, CCFE, Culham Science Centre, Abingdon, United Kingdom

  • Jozef Ongena

    Laboratory for Plasma Physics, LPP-ERM/KMS, Brussels, Belgium

  • Rui Coelho

    IST, Universidade de Lisboa, Lisbon, Portugal

  • Teddy Craciunescu

    National Institute for Laser, Plasma and Radiation Physics, Bucharest, Romania

  • Andrea Dal Molin

    Institute for Plasma Science and Technology, CNR, Milan, Italy

  • Ephrem Delabie

    Oak Ridge National Laboratory

  • Elena De La Luna

    Laboratorio Nacional de Fusión, CIEMAT, Madrid, Spain, Laboratorio Nacional de Fusión, CIEMAT, Madrid, Spain,, Laboratorio Nacional de Fusion, CIEMAT, Madrid, Spain, Laboratorio Nacional de Fusión, CIEMAT, 28040 Madrid, Spain, Laboratorio Nacional de Fusión, CIEMAT

  • Mykola Dreval

    NSC 'Kharkiv Institute of Physics and Technology', Kharkiv, Ukraine, National Science Center, Kharkiv Institute of Physics and Technology, Kharkiv, Ukraine

  • Remi Dumont

    CEA, CEA, IRFM, Saint-Paul-lez-Durance, France, Institut de Recherche sur la Fusion Magnétique, CEA Cadarache, France, CEA, IRFM, F-13108 Saint-Paul-lex-Durance, France

  • Giu Marcer

    Dipartimento di Fisica, Università di Milano-Bicocca, Milan, Italy

  • Davide Rigamonti

    Institute for Plasma Science and Technology, CNR, Milan, Italy, Institute for Plasma Science and Technology, CNR, via Cozzi 53, 20125 Milan, Italy

  • Sergei Sharapov

    UKAEA, UKAEA, CCFE, Culham Science Centre, Abingdon, UK

  • Mireille Schneider

    ITER Organization, Route de Vinon-sur-Verdon, St. Paul lez Durance, France

  • Paula Sirén

    UKAEA, CCFE, Culham Science Centre, Abingdon, UK, United Kingdom Atomic Energy Authority, Culham Science Centre, Abingdon, UK

  • Ziga Stancar

    UKAEA, UKAEA, CCFE, Culham Science Centre, Abingdon, UK, United Kingdom Atomic Energy Authority, Culham Science Centre, Abingdon, UK, UKAEA, CCFE, Culham Science Centre, Abingdon, UK; Jozef Stefan Institute, Ljubljana, Slovenia, UKAEA, Culham Science Centre, Abingdon, OX143DB, United Kingdom

  • Hongjuan Sun

    UKAEA, CCFE, Culham Science Centre, Abingdon, UK, UKAEA, CCFE, Culham Science Centre, Abingdon, United Kingdom

  • Marco Tardocchi

    Institute for Plasma Science and Technology, CNR, Milan, Italy

  • Henri Weisen

    Swiss Plasma Center, EPFL, Lausanne, Switzerland

  • . JET Contributors

    See the author list of J. Mailloux et al., Nucl. Fusion 62, 042026 (2022)