APS Logo

Simulation of optimized TNSA via temporal pulse shaping under realistic laser contrast conditions

ORAL

Abstract

Controlling the spatio-temporal coupling of laser energy into plasma electrons is crucial for achieving predictable beam parameters of ions accelerated from ultra-high intensity (UHI) laser-driven solid density plasmas. Especially for highest maximum energies, the most promising and readily available targets are foils of a few ten to hundred nanometers thickness. When working with targets of such small scales, meticulous control and precise metrology of the driving UHI laser pulses are paramount to avoiding premature plasma expansion that would lead to losses in absorption efficiency as well as lower accelerating fields. Recently, significant proton beam quality enhancement was reported from the Draco Petawatt facility at HZDR via spectral phase control of the driving laser pulse. In support of these experiments, we present a numerical simulation study with particle-in-cell codes taking into account realistic temporal intensity contrast features. In particular, we focus on the influence that manipulations of spectral phase terms applicable in laboratory experiments have on the acceleration of ions. We furthermore show how the state of the target and transient femtosecond plasma dynamics are encoded into time-integrated observables giving more insight into the previously obtained experimental results.

Publication: [1] Ziegler T et al. 2021 Proton beam quality enhancement by spectral phase control of a PW-class laser system Sci. Rep. 11 7338<br>[2] Garten M et al., Laser-Ion Acceleration in the Optimized TNSA-Regime via Temporal Pulse Shaping, in preparation

Presenters

  • Marco Garten

    Lawrence Berkeley National Laboratory

Authors

  • Marco Garten

    Lawrence Berkeley National Laboratory

  • Jakob Wetzel

    Helmholtz-Zentrum Dresden - Rossendorf, TU Dresden

  • Marvin Umlandt

    Helmholtz-Zentrum Dresden-Rossendorf, TU Dresden, Helmholtz-Zentrum Dresden - Rossendorf, TU Dresden

  • Ilya Goethel

    HZDR, Helmholtz-Zentrum Dresden - Rossendorf, TU Dresden

  • Thomas Miethlinger

    HZDR, Helmholtz-Zentrum Dresden - Rossendorf, TU Dresden

  • Brian E Marré

    HZDR, Helmholtz-Zentrum Dresden - Rossendorf, TU Dresden

  • Tim Ziegler

    HZDR, Helmholtz-Zentrum Dresden - Rossendorf, TU Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany

  • Thomas Pueschel

    Helmholtz-Zentrum Dresden - Rossendorf, TU Dresden

  • Stefan Bock

    Helmholtz-Zentrum Dresden - Rossendorf, TU Dresden

  • Karl Zeil

    Helmholtz-Zentrum Dresden-Rossendorf, HZDR, Helmholtz-Zentrum Dresden - Rossendorf, TU Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany

  • Michael Bussmann

    HZDR, Center for Advanced Systems Understanding, Helmholtz-Zentrum Dresden - Rossendorf

  • Thomas E Cowan

    Helmholtz-Zentrum Dresden-Rossendorf, HZDR, TU Dresden

  • Ulrich Schramm

    Helmholtz Zentrum Dresden-Rossendorf, Helmholtz-Zentrum Dresden-Rossendorf, TU Dresden, HZDR, TU Dresden, Helmholtz-Zentrum Dresden - Rossendorf, TU Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany

  • Thomas Kluge

    Helmholtz Zentrum Dresden-Rossendorf, Helmholtz-Zentrum Dresden - Rossendorf