APS Logo

Kinetic Ballooning Modes in Wendelstein 7-X high-performance experiments

ORAL

Abstract

Wendelstein 7-X stellarator (W7-X) aims to demonstrate steady state operation at high β (ratio of kinetic to magnetic pressure) values. This implies high plasma densities up to 2.1020 m-3 since the confinement scales beneficially with the density. In recent W7-X experiments, injection of hydrogen pellets was successfully applied for core fuelling [1]. The realization of such densities is complicated due to a limited control of the profile shape. During high-β phases of these discharges MHD-like events were observed, which may indicate a stability limit. In addition, linear GENE simulations suggest that the density and temperature gradients in that phases were large enough to destabilise kinetic ballooning modes (KBMs). Although these plasmas are stable to ideal-MHD instabilities, including ballooning modes, gyrokinetic effects on the latter render them unstable.

The possibility of KBMs limiting the performance motivates an extensive study of different W7-X configurations with regard to, first, electromagnetic modifications of microinstabilities and the so-called “stability valley”, and, second, the connection between global MHD configuration properties and local gyrokinetic stability. In particular, we consider the effects of the vacuum rotational transform, ι, and the mirror ratio.

[1] Bozhenkov, S., et al. Nuclear Fusion 60.6 (2020): 066011.

Presenters

  • Ksenia Aleynikova

    IPP Max Planck, Greifswald, Max-Planck-Institut für Plasmaphysik, EURATOM Association, Greifswald, Germany; Max Planck/Princeton Research Center for Plasma Physics

Authors

  • Ksenia Aleynikova

    IPP Max Planck, Greifswald, Max-Planck-Institut für Plasmaphysik, EURATOM Association, Greifswald, Germany; Max Planck/Princeton Research Center for Plasma Physics

  • Christian Brandt

    Max-Planck-Institut für Plasmaphysik, EURATOM Association, Greifswald, Germany

  • Alessandro Zocco

    Max-Planck-Institut für Plasmaphysik, EURATOM Association, Greifswald, Germany

  • Carolin Nuehrenberg

    Max-Planck-Institut für Plasmaphysik, EURATOM Association, Greifswald, Germany

  • Adrian von Stechow

    Max Planck Institute for Plasma Physics, Max-Planck-Institut für Plasmaphysik, EURATOM Association, Greifswald, Germany

  • Joachim Geiger

    Max-Planck-Institut für Plasmaphysik, Greifswald, Max-Planck-Institut für Plasmaphysik, EURATOM Association, Greifswald, Germany

  • Golo Fuchert

    Max-Planck-Institut für Plasmaphysik, EURATOM Association, Greifswald, Germany

  • Novimir A Pablant

    Princeton Plasma Physics Laboratory, PPPL, PPPL, Princeton University, P.O. Box 451, Princeton, New Jersey 08543, USA

  • Kian Rahbarnia

    Max-Planck-Institut für Plasmaphysik, Greifswald, Max-Planck-Institut für Plasmaphysik, EURATOM Association, Greifswald, Germany

  • Henning Thomsen

    Max-Planck-Institut für Plasmaphysik, Greifswald, Max-Planck-Institut für Plasmaphysik, EURATOM Association, Greifswald, Germany

  • Paul Mulholland

    Science and Technology of Nuclear Fusion, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands

  • M.J. Pueschel

    Dutch Institute for Fundamental Energy Research, Science and Technology of Nuclear Fusion, Eindhoven University of Technology, 5600 MB; Dutch Institute for Fundamental Energy Research, 5612 AJ Eindhoven, The Netherlands

  • Josefine Proll

    Science and Technology of Nuclear Fusion, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands