Design of inertial fusion implosions reaching the burning plasma regime with the I-Raum
ORAL · Invited
Abstract
This presentation describes the simulation design effort for the I-Raum campaign using the radiation-hydrodynamics code HYDRA [3]. The I-Raum hohlraum is engineered to increase late time symmetry control with pockets that radially displace the expanding wall plasma from the outer (44° and 50°) cones of laser beams, delaying interception of the inner (23° and 30°) cones. Further performance gains are achieved by adjusting cross-beam energy transfer (CBET) [4] via wavelength detuning (Δλ) between the inner and outer cones to reduce residual low mode drive asymmetries. These tactics allowed recent I-Raum experiments to reach a burning plasma state, producing up to 161 kJ of fusion yield. We conclude by exploring multiple paths for further performance enhancement in future experiments.
[1] O. A. Hurricane, et al., Plasma Phys. Contr. F. 61, 014033 (2019)
[2] H. F. Robey et al., Phys. Plasmas 25, 012711 (2018)
[3] M. M. Marinak, et al., Phys. Plasmas 8, 2275 (2001)
[4] A. L. Kritcher et al., Phys. Rev. E. 98, 053206 (2018)
–
Publication: A. B. Zylstra, O. A. Hurricane, D. A. Callahan, A. L. Kritcher, J. E. Ralph, H. F. Robey, J. S. Ross, C. V. Young, et al. "Burning plasma achieved in inertial fusion." Nature, In review
A. L. Kritcher, C. V. Young, H. F. Robey, C. R. Weber, A. B. Zylstra, O. A. Hurricane, D. A. Callahan, J. E. Ralph, J. S. Ross, et al. "Design of inertial fusion implosions reaching the burning plasma regime." Nature Physics, In review
J. S. Ross, J. E. Ralph, A. B. Zylstra, A. L. Kritcher, H. F. Robey, C. V. Young, O. A. Hurricane, D. A. Callahan, et al. "Experiments conducted in the burning plasma regime with inertial fusion implosions." Nature Physics, In review
Presenters
-
Chris V Young
Lawrence Livermore National Laboratory, Lawrence Livermore Natl Lab
Authors
-
Chris V Young
Lawrence Livermore National Laboratory, Lawrence Livermore Natl Lab