APS Logo

Progress on the magnetized ignition experimental platform for the National Ignition Facility

ORAL

Abstract

Magnetizing the DT fuel in an inertial confinement fusion (ICF) indirect drive (ID) target is expected to increase the ion temperature by > 0.5 keV and the neutron yield by > 50% relative to unmagnetized fuel due to reduced electron thermal conduction and alpha particle trapping. A magnetized ID project at NIF is underway and has started applying a ~ 25 T seed field to D2 gas-filled capsules in a Au:Ta high electrical resistivity hohlraum to quantify the B-field effects in these room temperature implosions and compare with modeling predictions. Ice-layered DT implosions will follow and require a new pulser design and a modified DT ice layer growth strategy. We will describe the status of the experiments and the project plan.

Publication: J. D. Moody et al., "Transient magnetic field diffusion considerations relevant to magnetically assisted indirect drive inertial confinement fusion," Phys. Plasmas 27, 112711 (2020).<br>L. B. Bayu Aji et al., "Sputtered Au–Ta films with tunable electrical resistivity," J. Phys. D 54, 075303 (2020).

Presenters

  • John D Moody

    Lawrence Livermore National Laboratory, Lawrence Livermore Natl Lab, LLNL, Lawrence Livermore National Lab

Authors

  • John D Moody

    Lawrence Livermore National Laboratory, Lawrence Livermore Natl Lab, LLNL, Lawrence Livermore National Lab

  • Bradley B Pollock

    Lawrence Livermore Natl Lab, Lawrence Livermore National Lab

  • Hong W Sio

    Lawrence Livermore Natl Lab, Lawrence Livermore National Lab

  • David J Strozzi

    Lawrence Livermore Natl Lab, Lawrence Livermore National Lab

  • Darwin Ho

    LLNL, Lawrence Livermore Natl Lab, Lawrence Livermore National Lab

  • Chris A Walsh

    Lawrence Livermore National Laboratory, Lawrence Livermore Natl Lab, Lawrence Livermore National Lab

  • Sergei Kucheyev

    Lawrence Livermore Natl Lab, Lawrence Livermore National Lab

  • Bernard Kozioziemski

    Lawrence Livermore Natl Lab, Lawrence Livermore National Lab

  • Evan Carroll

    Lawrence Livermore Natl Lab, Lawrence Livermore National Lab, Lawrence Livermore National Laboratory

  • Johnathan Fry

    Lawrence Livermore Natl Lab, Lawrence Livermore National Lab

  • Vincent Tang

    Lawrence Livermore Natl Lab, Lawrence Livermore National Lab, Lawrence Livermore National Laboratory

  • Suhas Bhandarkar

    Lawrence Livermore National Lab, Lawrence Livermore Natl Lab

  • Jim Sater

    Lawrence Livermore Natl Lab, Lawrence Livermore National Lab

  • Grant G Logan

    Lawrence Livermore Natl Lab, Lawrence Livermore National Lab

  • Jeff Bude

    Lawrence Livermore Natl Lab, Lawrence Livermore National Lab, Lawrence Livermore National Laboratory

  • Mark C Herrmann

    Lawrence Livermore National Lab, Lawrence Livermore National Laboratory, Lawrence Livermore Natl Lab

  • Ken Skulina

    Lawrence Livermore Natl Lab, Lawrence Livermore National Lab

  • Scott Winters

    Lawrence Livermore Natl Lab, Lawrence Livermore National Lab

  • Edward P Hartouni

    Lawrence Livermore Natl Lab, Lawrence Livermore National Lab

  • Jeremy P Chittenden

    Imperial College London

  • Sam O'Neill

    Imperial College London

  • Brian D Appelbe

    Imperial College London, CIFS, The Blackett Laboratory, Imperial College London, Imperial College

  • Aidan Boxall

    Imperial College London

  • Aidan C Crilly

    Imperial College London, CIFS, The Blackett Laboratory, Imperial College London

  • Jonathan R Davies

    University of Rochester, Laboratory for Laser Energetics, U. of Rochester, Laboratory for Laser Energetics, University of Rochester

  • Jonathan L Peebles

    Laboratory for Laser Energetics, Lab for Laser Energetics, Laboratory for Laser Energetics, U. of Rochester, Laboratory for Laser Energetics, University of Rochester, University of Rochester

  • Shinsuke Fujioka

    Osaka Univ