Machine Learning for Real-time Fusion Plasma Behavior Prediction and Manipulation
ORAL
Abstract
–
Publication: A. Jalalvand, J. Abbate, R. Conlin, G. Verdoolaege, E. Koleman, "Real-Time and Adaptive Reservoir Computing with an Application to Profile Prediction in Fusion Plasma", IEEE Transactions on Neural Networks and Learning Systems, (2021), doi: 10.1109/TNNLS.2021.3085504<br><br>R. Conlin, J. Abbate, K. Erickson and E. Kolemen, "Keras2c: A library for converting Keras neural networks to real-time compatible C", Engineering Applications of Artificial Intelligence, (2021), https://doi.org/10.1016/j.engappai.2021.104182<br><br>J. Abbate and R. Conlin, E. Kolemen, "Data-Driven Profile Prediction for DIII-D", Nuclear Fusion, 61 046027 (2021) https://doi.org/10.1088/1741-4326/abe08d
Presenters
-
Egemen Kolemen
Princeton University, Princeton University / PPPL, Princeton University/PPPL
Authors
-
Egemen Kolemen
Princeton University, Princeton University / PPPL, Princeton University/PPPL
-
Mark D Boyer
Princeton Plasma Physics Laboratory, PPPL, Princeton Plasma Physics Lab, Princeton Plasma Physics Laboratry
-
Ryan Coffee
SLAC, SLAC National Accelerator Laboratory, SLAC National Accelerator Lab
-
Jeff Schneider
Carnegie Mellon University, CMU
-
David R Smith
University of Wisconsin - Madison
-
Azarakhsh Jalalvand
Ghent University
-
Rory Conlin
Princeton University, Princeton Plasma Physics Laboratory, Princeton University / PPPL, Princeton University/PPPL
-
Joseph A Abbate
Princeton University, Princeton Plasma Physics Laboratory, Princeton University / PPPL