Mini-Conference: Machine Learning in Plasma Sciences II
ORAL · TM10 · ID: 21927
Presentations
-
Machine learning surrogates of Bayesian models of nuclear fusion experiments
ORAL
–
Presenters
-
Andrea Pavone
Max Planck Institute for Plasma Physics
Authors
-
Andrea Pavone
Max Planck Institute for Plasma Physics
-
-
Overview and status of the FES Scientific Machine Learning project, "Accelerating radio frequency modeling using machine learning"
ORAL
–
Presenters
-
John C Wright
Massachusetts Institute of Technology MIT, Massachusetts Institute of Technology MI, MIT PSFC
Authors
-
John C Wright
Massachusetts Institute of Technology MIT, Massachusetts Institute of Technology MI, MIT PSFC
-
Gregory M Wallace
MIT PSFC, Massachusetts Institute of Technology MI
-
E.W. Bethel
LBNL, Lawrence Berkeley National Laboratory
-
Z. Bai
LBNL, Lawrence Berkeley National Laboratory
-
T. Perciano
LBNL, Lawrence Berkeley National Laboratory
-
R. Sadre
LBNL, Lawrence Berkeley National Laboratory
-
Nicola Bertelli
PPPL, Princeton University, Princeton University / Princeton Plasma Physics Laboratory, Princeton Plasma Physics Laboratory
-
Syun'ichi Shiraiwa
Princeton Plasma Physics Laboratory, PPPL
-
-
Novel aggregate machine learning and transport modeling profile predictions
ORAL
–
Publication: J. Abbate et al 2021 Nucl. Fusion 61 046027
Presenters
-
Joseph A Abbate
Princeton University, Princeton Plasma Physics Laboratory, Princeton University / PPPL
Authors
-
Joseph A Abbate
Princeton University, Princeton Plasma Physics Laboratory, Princeton University / PPPL
-
Rory Conlin
Princeton University, Princeton Plasma Physics Laboratory, Princeton University / PPPL, Princeton University/PPPL
-
Egemen Kolemen
Princeton University, Princeton University / PPPL, Princeton University/PPPL
-
-
Practical Techniques for Machine Learning Control of Fusion Plasmas
ORAL
–
Presenters
-
Rory Conlin
Princeton University, Princeton Plasma Physics Laboratory, Princeton University / PPPL, Princeton University/PPPL
Authors
-
Rory Conlin
Princeton University, Princeton Plasma Physics Laboratory, Princeton University / PPPL, Princeton University/PPPL
-
Joseph A Abbate
Princeton University, Princeton Plasma Physics Laboratory, Princeton University / PPPL
-
Laura Fang
Princeton University
-
Azmaine Iqtidar
Princeton University
-
Yunona Iwasaki
Princeton University
-
Aaron Wu
Princeton University
-
Egemen Kolemen
Princeton University, Princeton University / PPPL, Princeton University/PPPL
-
-
Subgrid Modeling of Gyrokinetic Turbulence using Machine Learning
ORAL
–
Presenters
-
Nathaniel Barbour
University of Maryland, College Park
Authors
-
Nathaniel Barbour
University of Maryland, College Park
-
William D Dorland
University of Maryland, College Park, Princeton Plasma Physics Laboratory, University of Maryland Department of Physics, UMD
-
-
Data-driven models for Alfvén eigenmode classification based on high resolution ECE diagnostics at DIII-D
ORAL
–
Publication: We are working on an extended version of this work to be submitted to Nuclear Fusion journal.
Presenters
-
Azarakhsh Jalalvand
Ghent University
Authors
-
Azarakhsh Jalalvand
Ghent University
-
Alan Kaptanoglu
University of Washington
-
Alvin V Garcia
University of California, Irvine
-
Andrew O Nelson
Princeton Plasma Physics Laboratory, Princeton University
-
Joseph A Abbate
Princeton University, Princeton Plasma Physics Laboratory, Princeton University / PPPL
-
Max E Austin
University of Texas at Austin
-
Geert Verdoolaege
Ghent University
-
Steven L Brunton
University of Washington
-
William W Heidbrink
University of California, Irvine
-
Egemen Kolemen
Princeton University, Princeton University / PPPL, Princeton University/PPPL
-
-
Data-enabled Fusion Technology (DeFT): Machine Learning Tools in the Ousai Platform
ORAL
–
Publication: A Gaussian Process Guide for Signal Regression in Nuclear Fusion, Craig Michoski, Todd Oliver, David Hatch, Ahmed Diallo, Mike Kotschenreuther, David Eldon, Rich Groebner, Oak Nelson (In Preparation)
System Architectures for Integrated Analysis (SAFIA), (In Preparation), Craig Michoski, Todd Oliver, David Hatch, Dongyang Kuang, Steph-Y. Louis, Siwei Luo, Matthieu VitsePresenters
-
Craig Michoski
University of Texas at Austin
Authors
-
Craig Michoski
University of Texas at Austin
-
David R Hatch
University of Texas at Austin, Institute for Fusion Studies, University of Texas at Austin
-
Todd Oliver
ODEN Institute
-
Dongyang Kuang
University of Texas at Austin
-
Steph-Y. Louis
Sapientai LLC
-
Siwei Luo
Sapientai LLC
-
Matthieu Vitse
Sapientai LLC
-
-
A deterministic Gaussian-Mixtures Coulomb-collision algorithm for particle-in-cell
ORAL
–
Presenters
-
Truong Nguyen
Los Alamos National Laboratory, Los Alamos Natl Lab
Authors
-
Truong Nguyen
Los Alamos National Laboratory, Los Alamos Natl Lab
-
Luis Chacon
Los Alamos Natl Lab
-
Guangye Chen
Los Alamos Natl Lab
-
William T Taitano
Los Alamos National Laboratory
-
-
Data augmentation for disruption prediction via robust surrogate models
ORAL
–
Presenters
-
Katharina Rath
Ludwig Maximilian University Munich, Max Planck Insitute for Plasma Physics
Authors
-
Katharina Rath
Ludwig Maximilian University Munich, Max Planck Insitute for Plasma Physics
-
Christopher G Albert
Max Planck Institute for Plasma Physics
-
Bernd Bischl
Ludwig Maximilian University Munich
-
Udo von Toussaint
Max Planck Institute for Plasma Physics
-
-
Upgrading LAPD diagnostic pipelines for training generative ML models
ORAL
–
Presenters
-
Phil Travis
University of California, Los Angeles
Authors
-
Phil Travis
University of California, Los Angeles
-
Steve T Vincena
University of California, Los Angeles, University of California, Los Angeles, US
-