APS Logo

Optimisation of high-intensity laser-solid interactions using gaussian process regression.

POSTER

Abstract

Laser-driven energetic proton accelerators have the potential to provide compact sources of MeV energy, low emittance, sub-picosecond duration proton beams for a variety of applications.  The primary impediment to their wider adoption is the challenge of shot-to-shot reproducibility and tuning of the parameters to optimize desirable proton beam qualities in a multi-dimensional parameter space. Recent developments in laser technology and control systems, making available multi-Hz delivery of joule-class, relativistically-intense laser pulses with automated control, combined with online diagnostics have enabled the automated scanning of parameters space, quantification of uncertainty and use of feedback loops for optimization of desirable outputs (e.g. proton beam maximum energy).  Bayesian optimization has already demonstrated impressive gain in x-ray generation when used in conjunction with a laser wakefield accelerator [1].  Here, we discuss the preliminary results from experiments expanding this tool to laser-driven proton acceleration and challenges facing the adaption of this gaussian-process-regression-based Bayesian optimizer to the sharply varying parameter space of laser-solid interactions.

 

[1] R. Shalloo et al. Nature Comms, 11 (2020)

Presenters

  • Charlotte A Palmer

    Queen's University Belfast

Authors

  • Charlotte A Palmer

    Queen's University Belfast

  • Matthew J. V Streeter

    Queen's University Belfast, The Queens University of Belfast, The Cockcroft Institute

  • Brendan Loughran

    Queen's University Belfast

  • Hamad Ahmed

    STFC Central Laser Facility

  • Sam Astbury

    STFC Central Laser Facility

  • Marco Borghesi

    Queen's University Belfast

  • Nicholas Bourgeois

    STFC Central Laser Facility, Central Laser Facility, Rutherford Appleton Lab

  • Chandra Breanne Curry

    SLAC - Natl Accelerator Lab, SLAC National Accelerator Laboratory

  • Stephen J Dann

    STFC Central Laser Facility, Central Laser Facility, The Cockcroft Institute

  • Nicholas P Dover

    Imperial College London, Imperial College London, UK & Kansai Photon Science Institute, QST, Japan

  • Tom Dzelzainis

    STFC Central Laser Facility

  • Oliver Ettlinger

    Imperial College London

  • Maxence Gauthier

    SLAC - Natl Accelerator Lab, SLAC National Accelerator Laboratory

  • Lorenzo Giuffrida

    ELI Beamlines

  • Griffin Glenn

    SLAC National Accelerator Laboratory, SLAC - Natl Accelerator Lab

  • Siegfried Glenzer

    Lawrence Livermore Natl Lab, Stanford University, SLAC - Natl Accelerator Lab, SLAC National Accelerator Laboratory

  • Ross Gray

    Strathclyde University

  • James Green

    STFC Central Laser Facility, Central Laser Facility

  • George Hicks

    Imperial College London, Imperial College London, UK

  • Cormac Hyland

    Queen's University Belfast

  • Valeriia Istokskaia

    Faculty of Nucl. Science and Phys. Engineering, Czech Technical University in Prague; Extreme Light Infrastructure (ELI)-Beamlines Center, ELI Beamlines

  • Martin King

    Strathclyde University

  • Daniele Margarone

    Queen's University Belfast; Extreme Light Infrastructure (ELI)-Beamlines Center, Queen's University Belfast, ELI Beamlines

  • Orla McCusker

    Queen's University Belfast

  • Paul McKenna

    Strathclyde University

  • Zulfikar Najmudin

    Imperial College London, Imperial College London, UK

  • Claudia Parisuana

    SLAC National Accelerator Laboratory, SLAC Natl Accelerator Laboratory

  • Peter Parsons

    STFC Central Laser Facility, University of Manchester

  • Chris Spindloe

    STFC Central Laser Facility, Scitech Precision

  • Dan R Symes

    STFC Central Laser Facility, Central Laser Facility

  • Franziska Treffert

    SLAC National Accelerator Laboratory, SLAC - Natl Accelerator Lab

  • Nuo Xu

    Imperial College London

  • Alexander G Thomas

    University of Michigan, University of Michigan - Ann Arbor