APS Logo

Energetic ion acceleration from relativistically transparent prepulse-expanded films driven by ultra-intense femtosecond laser pulses

ORAL · Invited

Abstract

State-of-the-art high-power lasers are reaching ever-higher focal intensities, enabling discoveries in high-field science. One key application is the generation of high energy particles from irradiation of solid foils. We have recently investigated laser driven ion acceleration using two different femtosecond-class laser systems operating with ultra-high focal intensities exceeding 1021 W/cm2:  J-KAREN-P, at KPSI, and DRACO PW at HZDR.  Using advanced pulse characterisation techniques, we tuned both lasers to generate similar intensity and laser contrast profiles, enabling proof-of-principle repeatability experiments.

We irradiated sub-micron thickness formvar foils to explore ion acceleration in the relativistic transparency regime driven on femtosecond timescales.  Despite a modest laser energy (~10 J) and no contrast-enhancing plasma mirrors we have generated high energy protons (>50 MeV) and carbon ions (>30 MeV/nucleon) at an optimum thickness of ~250 nm.  Transmitted light and electron diagnostics show that this optimum thickness is related to the first onset of relativistic transparency.  

Hydrodynamic and 3D particle-in-cell modelling reveals that the laser prepulse plays an integral part in pre-expanding the targets.  Acceleration is optimised when the prepulse driven expansion primes the target density to be matched to the relativistic critical density threshold.  The laser ponderomotively blows out electrons from the transparent target, causing a strong transient space charge in the densest region. Ions accelerated from this region are post-accelerated in large-scale sheath fields.  The quantitative replication of the results on both laser facilities demonstrates the robustness of the mechanism.  These results pave the way for the establishment of repetitive laser driven ion sources using current femtosecond-class high power lasers, providing high energy and high peak current beams ideal for applications in radiobiology and materials science.   

Presenters

  • Nicholas P Dover

    Imperial College London, Imperial College London, UK & Kansai Photon Science Institute, QST, Japan

Authors

  • Nicholas P Dover

    Imperial College London, Imperial College London, UK & Kansai Photon Science Institute, QST, Japan

  • Tim Ziegler

    Helmholtz-Zentrum Dresden-Rossendorf, Germany

  • Marco Garten

    Helmholtz-Zentrum Dresden-Rossendorf, Germany

  • Hironao Sakaki

    Kansai Photon Science Institute, QST, Japan

  • Akira Kon

    Kansai Photon Science Institute, QST, Japan

  • Hazel Lowe

    Kansai Photon Science Institute, QST, Japan

  • Ilya Goethel

    Helmholtz-Zentrum Dresden-Rossendorf, Germany

  • Stefan Assenbaum

    Helmholtz-Zentrum Dresden-Rossendorf, Germany

  • Constantin Bernert

    Helmholtz-Zentrum Dresden-Rossendorf, Germany

  • Stefan Bock

    Helmholtz-Zentrum Dresden-Rossendorf, Germany

  • Emma J Ditter

    Imperial College London, UK

  • George Hicks

    Imperial College London, Imperial College London, UK

  • Masaki Kando

    Kansai Photon Science Institute, QST, Japan

  • Hiromitsu Kiriyama

    Kansai Photon Science Institute, QST, Japan

  • Kotaro Kondo

    Kansai Photon Science Institute, QST, Japan

  • Tatsuhiko Miyatake

    Kansai Photon Science Institute, QST, Japan & Kyushu University, Japan

  • Thomas Pueschel

    Helmholtz-Zentrum Dresden-Rossendorf, Germany

  • Martin Rehwald

    Helmholtz-Zentrum Dresden-Rossendorf, Germany

  • Marvin Umlandt

    Helmholtz-Zentrum Dresden-Rossendorf, Germany

  • Yukinobu Watanabe

    Kyushu Univ

  • Kiminori Kondo

    Kansai Photon Science Institute, QST, Japan

  • Zulfikar Najmudin

    Imperial College London, Imperial College London, UK

  • Thomas Kluge

    Helmholtz-Zentrum Dresden-Rossendorf, Germany

  • Ulrich Schramm

    Helmholtz-Zentrum Dresden-Rossendorf, Germany

  • Karl Zeil

    Helmholtz-Zentrum Dresden-Rossendorf, Germany

  • Mamiko Nishiuchi

    Kansai Photon Science Institute, QST, Japan