Energetic ion acceleration from relativistically transparent prepulse-expanded films driven by ultra-intense femtosecond laser pulses
ORAL · Invited
Abstract
We irradiated sub-micron thickness formvar foils to explore ion acceleration in the relativistic transparency regime driven on femtosecond timescales. Despite a modest laser energy (~10 J) and no contrast-enhancing plasma mirrors we have generated high energy protons (>50 MeV) and carbon ions (>30 MeV/nucleon) at an optimum thickness of ~250 nm. Transmitted light and electron diagnostics show that this optimum thickness is related to the first onset of relativistic transparency.
Hydrodynamic and 3D particle-in-cell modelling reveals that the laser prepulse plays an integral part in pre-expanding the targets. Acceleration is optimised when the prepulse driven expansion primes the target density to be matched to the relativistic critical density threshold. The laser ponderomotively blows out electrons from the transparent target, causing a strong transient space charge in the densest region. Ions accelerated from this region are post-accelerated in large-scale sheath fields. The quantitative replication of the results on both laser facilities demonstrates the robustness of the mechanism. These results pave the way for the establishment of repetitive laser driven ion sources using current femtosecond-class high power lasers, providing high energy and high peak current beams ideal for applications in radiobiology and materials science.
–
Presenters
-
Nicholas P Dover
Imperial College London, Imperial College London, UK & Kansai Photon Science Institute, QST, Japan
Authors
-
Nicholas P Dover
Imperial College London, Imperial College London, UK & Kansai Photon Science Institute, QST, Japan
-
Tim Ziegler
Helmholtz-Zentrum Dresden-Rossendorf, Germany
-
Marco Garten
Helmholtz-Zentrum Dresden-Rossendorf, Germany
-
Hironao Sakaki
Kansai Photon Science Institute, QST, Japan
-
Akira Kon
Kansai Photon Science Institute, QST, Japan
-
Hazel Lowe
Kansai Photon Science Institute, QST, Japan
-
Ilya Goethel
Helmholtz-Zentrum Dresden-Rossendorf, Germany
-
Stefan Assenbaum
Helmholtz-Zentrum Dresden-Rossendorf, Germany
-
Constantin Bernert
Helmholtz-Zentrum Dresden-Rossendorf, Germany
-
Stefan Bock
Helmholtz-Zentrum Dresden-Rossendorf, Germany
-
Emma J Ditter
Imperial College London, UK
-
George Hicks
Imperial College London, Imperial College London, UK
-
Masaki Kando
Kansai Photon Science Institute, QST, Japan
-
Hiromitsu Kiriyama
Kansai Photon Science Institute, QST, Japan
-
Kotaro Kondo
Kansai Photon Science Institute, QST, Japan
-
Tatsuhiko Miyatake
Kansai Photon Science Institute, QST, Japan & Kyushu University, Japan
-
Thomas Pueschel
Helmholtz-Zentrum Dresden-Rossendorf, Germany
-
Martin Rehwald
Helmholtz-Zentrum Dresden-Rossendorf, Germany
-
Marvin Umlandt
Helmholtz-Zentrum Dresden-Rossendorf, Germany
-
Yukinobu Watanabe
Kyushu Univ
-
Kiminori Kondo
Kansai Photon Science Institute, QST, Japan
-
Zulfikar Najmudin
Imperial College London, Imperial College London, UK
-
Thomas Kluge
Helmholtz-Zentrum Dresden-Rossendorf, Germany
-
Ulrich Schramm
Helmholtz-Zentrum Dresden-Rossendorf, Germany
-
Karl Zeil
Helmholtz-Zentrum Dresden-Rossendorf, Germany
-
Mamiko Nishiuchi
Kansai Photon Science Institute, QST, Japan