Broadening of the Power Fall-Off Length in a High Density, High Confinement H-mode Regime in ASDEX Upgrade

ORAL

Abstract

Power exhaust solutions for a next-step device like ITER must be compatible with high plasma performance. In particular, a high separatrix density is necessary to achieve sufficiently low divertor power loading and type-I ELMs must be avoided or mitigated. Recent optimisation at ASDEX Upgrade has led to a regime highly suitable for power exhaust, combining high core performance with high separatrix density at high triangularity, close-to-double-null as foreseen for ITER. It is characterised by enhanced filamentary transport preventing type-I ELMs and leading to a quasi-continuous exhaust, with the interaction between filaments and divertor detachment still being an open point of research. While for type-I ELMs the whole pedestal is affected, here only the pedestal foot is altered. In this region nowadays machines match the collisionality for ITER in power exhaust compatible regimes. The most crucial power exhaust parameter, the power fall-off length, is shown to widen up to a factor of four w.r.t. the ITPA-multi-machine scaling.

Authors

  • Michael Faitsch

    Max-Planck-Institute for Plasma Physics, Boltzmannstr. 2, D-85748 Garching, Germany

  • Georg Harrer

    Institute of Applied Physics, TU Wien, Fusion@OEAW, Wiedner Hauptstr. 8-10, 1040 Vienna, Austria

  • Thomas Eich

    Max-Planck-Institute for Plasma Physics, Boltzmannstr. 2, D-85748 Garching, Germany

  • Elisabeth Wolfrum

    Max-Planck-Institute for Plasma Physics, Boltzmannstr. 2, D-85748 Garching, Germany

  • Matthias Bernert

    Max-Planck-Institute for Plasma Physics, Boltzmannstr. 2, D-85748 Garching, Germany

  • Dominik Brida

    Max-Planck-Institute for Plasma Physics, Boltzmannstr. 2, D-85748 Garching, Germany

  • Pierre David

    Max-Planck-Institute for Plasma Physics, Boltzmannstr. 2, D-85748 Garching, Germany

  • Mike Dunne

    Max-Planck-Institute for Plasma Physics, Boltzmannstr. 2, D-85748 Garching, Germany

  • Michael Griener

    Max-Planck-Institute for Plasma Physics, Boltzmannstr. 2, D-85748 Garching, Germany

  • Peter Manz

    Max-Planck-Institute for Plasma Physics, Boltzmannstr. 2, D-85748 Garching, Germany

  • Davide Silvagni

    Max-Planck-Institute for Plasma Physics, Boltzmannstr. 2, D-85748 Garching, Germany

  • Balazs Tal

    Max-Planck-Institute for Plasma Physics, Boltzmannstr. 2, D-85748 Garching, Germany

  • Ulrich Stroth

    Max-Planck-Institut f{\"u}r Plasmaphysik, Max-Planck-Institute for Plasma Physics, Boltzmannstr. 2, D-85748 Garching, Germany