Bayesian Parameter Estimation for Data Integration in ICF Experiments
POSTER
Abstract
Bayesian parameter estimation is a powerful tool for the interpretation of experimental data and discriminating between models. It is particularly powerful when applied to data integration, the task of simultaneously integrating multiple disparate diagnostic data sets to constrain a model. This technique is demonstrated on data obtained from MagLIF experiments where imaging, spectroscopic, x-ray, and neutron data are all used to simultaneously constrain the set of parameters that best describe the observables. Our algorithm also gives confidence intervals and correlations directly from the analysis, as well as the ability to estimate the value of information for each of the diagnostic inputs.
Presenters
-
Patrick F Knapp
Sandia Natl Labs, Sandia National Laboratories
Authors
-
Patrick F Knapp
Sandia Natl Labs, Sandia National Laboratories
-
Michael E Glinsky
Sandia Natl Labs
-
Matthew Evans
Univ of Rochester, Laboratory for Laser Energetics, Univ of Rochester, University of Rochester
-
Stephanie Hansen
Sandia Natl Labs
-
Christopher A. Jennings
Sandia Natl Labs, Sandia National Laboratories
-
Eric C. Harding
Sandia Natl Labs
-
Matthew R. Weis
Sandia Natl Labs, Sandia National Laboratory
-
Stephen A Slutz
Sandia Natl Labs, Sandia National Laboratories
-
Matt R. Gomez
Sandia Natl Labs, Sandia Natl Lab, Sandia National Laboratories
-
Kelly D Hahn
Sandia Natl Labs
-
Matthew R Martin
Sandia Natl Labs, Sandia National Laboratories
-
Matthias Geissel
Sandia Natl Labs
-
Ian C. Smith
Sandia Natl Labs
-
Pierre-Alexandre Gourdain
University of Rochester, University of Rochester, Laboratory for Laser Energetics, Univ of Rochester
-
Kyle J Peterson
Sandia Natl Labs, Sandia National Laboratories
-
Brent M Jones
Sandia National Laboratories, Sandia Natl Labs
-
Jens Schwarz
Sandia Natl Labs
-
Gregory A. Rochau
Sandia Natl Labs
-
Daniel B Sinars
Sandia Natl Labs, Sandia National Laboratories