VITALS: Surrogate Models and Genetic Algorithms to Accelerate Transport Model Validation

ORAL

Abstract

The Validation via Iterative Training of Active Learning Surrogates (VITALS) framework [1] exploits surrogate strategies and a genetic-algorithm-based optimizer to test whether a combination of plasma parameters exists such that experimental transport measurements are captured by a transport model within error bars. For the first time, additional measurable quantities, such as incremental electron thermal diffusivity, temperature and density fluctuation levels, cross-phase angles, and particle diffusion and convection coefficients can be used simultaneously along with transport fluxes to study model validation. Furthermore, any combination of plasma parameters can be scanned with minimal computational cost. VITALS has been used successfully to validate the TGLF quasilinear turbulent transport model in the Alcator C-Mod and ASDEX-Upgrade tokamaks. First results indicate that these machine learning algorithms are suitable and adaptable as a self-consistent, fast, and comprehensive validation methodology for plasma transport codes.

[1] P. Rodriguez-Fernandez, Fusion Technol. 74:1-2, 65-76 (2018)

Presenters

  • Pablo Rodriguez Fernandez

    Massachusetts Inst of Tech-MIT

Authors

  • Pablo Rodriguez Fernandez

    Massachusetts Inst of Tech-MIT

  • Anne Elisabeth White

    Massachusetts Inst of Tech-MIT, MIT - PSFC, MIT

  • Alexander J Creely

    Massachusetts Inst of Tech-MIT, MIT Plasma Science and Fusion Center

  • Martin J Greenwald

    Massachusetts Inst of Tech-MIT, Massachusetts Inst of Tech, MIT Plasma Science and Fusion Center, MIT - PSFC, MIT

  • Nathan T Howard

    Massachusetts Inst of Tech-MIT, MIT Plasma Science and Fusion Center, MIT

  • Francesco Sciortino

    Massachusetts Inst of Tech-MIT

  • John C Wright

    MIT PSFC, Plasma Science and Fusion Center, Massachusetts Institute of Technology, Massachusetts Inst of Tech-MIT

  • Clemente Angioni

    Max-Planck-Institut für Plasmaphysik, Max Planck Inst, Garching, Germany, Max Planck Inst

  • Jonathan Citrin

    DIFFER - Dutch Institute for Fundamental Energy Research, Eindhoven, Netherlands, FOM Institute DIFFER

  • Emiliano Fable

    Max Planck Inst, Max-Planck-Institut für Plasmaphysik

  • Simon James Freethy

    Max Planck Inst, Massachusetts Inst of Tech-MIT, Max-Planck-Institut für Plasmaphysik, Massachusetts Inst of Tech-MIT

  • Gary M Staebler

    GA, General Atomics - San Diego