Isotope and mixture effects on neoclassical transport in the pedestal

ORAL

Abstract

The isotope mass scaling of the energy confinement time in tokamak plasmas differs from gyro-Bohm estimates, with implications for the extrapolation from current experiments to D-T reactors. Differences in mass scaling in L-mode and various H-mode regimes suggest that the isotope effect may originate from the pedestal. In the pedestal, sharp gradients render local diffusive estimates invalid, and global effects due to orbit-width scale profile variations have to be taken into account. We calculate neoclassical cross-field fluxes from a radially global drift-kinetic equation using the PERFECT code [Landreman et al. (2014) PPCF {\bf 56} 045005], to study isotope composition effects in density pedestals. The relative reduction to the peak heat flux due to global effects as a function of the density scale length is found to saturate at an isotope-dependent value that is larger for heavier ions. We also consider D-T and H-D mixtures with a focus on isotope separation. The ability to reproduce the mixture results via single-species simulations with artificial ``DT'' and ``HD'' species has been considered. These computationally convenient single ion simulations give a good estimate of the total ion heat flux in corresponding mixtures.

Authors

  • Istvan Pusztai

    Chalmers University of Technology

  • Stefan Buller

    Chalmers University of Technology

  • John T. Omotani

    Chalmers University of Technology

  • Sarah L. Newton

    CCFE, Culham Science Centre