Characterizing NIF hohlraum energy and particle transport using mid-Z spectroscopic tracer materials
ORAL
Abstract
Line emission from mid-Z dopants placed at several spatial locations is used to determine the electron temperature ($T_e$) and plasma flow in NIF hohlraums. Laser drive ablates the dopant and launches it on a trajectory recorded with a framing camera. Analysis of temporally streaked spectroscopy provides an estimate of the time-resolved $T_e$. The estimated temperature gradients show evidence for significantly restricted thermal conduction. Non-local thermal conductivity can account for part of this; additional effects due to magnetic fields, return-current instabilities, ion acoustic turbulence and other physics are considered. We describe our findings and discuss interpretations. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
–
Authors
-
J. D. Moody
Lawrence Livermore Natl Lab, LLNL
-
M. A. Barrios
Insight Datascience
-
K. Widmann
LLNL
-
L. J. Suter
LLNL
-
D. A. Liedahl
LLNL
-
M. B. Schneider
LLNL
-
D. B. Thorn
LLNL
-
W. A. Farmer
LLNL
-
O. L. Landen
LLNL
-
R. L. Kauffman
LLNL
-
C. Jarrott
LLNL
-
M. W. Sherlock
LLNL
-
H. Chen
LLNL
-
O. Jones
LLNL
-
S. A. MacLaren
LLNL
-
D. Eder
LLNL
-
D. J. Strozzi
LLNL, Lawrence Livermore Natl Lab
-
Nathan Meezan
Lawrence Livermore Natl Lab, LLNL, Lawrence Livermore National Laboratory
-
A. Nikroo
LLNL
-
J. J. Kroll
LLNL
-
S. Johnson
LLNL
-
J. Jaquez
GA
-
H. Huang
GA