Characterizing NIF hohlraum energy and particle transport using mid-Z spectroscopic tracer materials

ORAL

Abstract

Line emission from mid-Z dopants placed at several spatial locations is used to determine the electron temperature ($T_e$) and plasma flow in NIF hohlraums. Laser drive ablates the dopant and launches it on a trajectory recorded with a framing camera. Analysis of temporally streaked spectroscopy provides an estimate of the time-resolved $T_e$. The estimated temperature gradients show evidence for significantly restricted thermal conduction. Non-local thermal conductivity can account for part of this; additional effects due to magnetic fields, return-current instabilities, ion acoustic turbulence and other physics are considered. We describe our findings and discuss interpretations. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Authors

  • J. D. Moody

    Lawrence Livermore Natl Lab, LLNL

  • M. A. Barrios

    Insight Datascience

  • K. Widmann

    LLNL

  • L. J. Suter

    LLNL

  • D. A. Liedahl

    LLNL

  • M. B. Schneider

    LLNL

  • D. B. Thorn

    LLNL

  • W. A. Farmer

    LLNL

  • O. L. Landen

    LLNL

  • R. L. Kauffman

    LLNL

  • C. Jarrott

    LLNL

  • M. W. Sherlock

    LLNL

  • H. Chen

    LLNL

  • O. Jones

    LLNL

  • S. A. MacLaren

    LLNL

  • D. Eder

    LLNL

  • D. J. Strozzi

    LLNL, Lawrence Livermore Natl Lab

  • Nathan Meezan

    Lawrence Livermore Natl Lab, LLNL, Lawrence Livermore National Laboratory

  • A. Nikroo

    LLNL

  • J. J. Kroll

    LLNL

  • S. Johnson

    LLNL

  • J. Jaquez

    GA

  • H. Huang

    GA