Inverse Bremsstrahlung Heating in Laser-Matter Interactions: the effects of other particles
POSTER
Abstract
The laser-matter interaction of inverse bremsstrahlung heating is studied via a particle in cell code, PICLS and via molecular dynamics code, MD. Inverse bremsstrahlung heating, an important process in the laser-matter interaction, involves three different kinds of interactions, i)the interaction of the electrons with the external laser field, ii) the electron–ion interaction and iii) the electron-electron interaction. In the interaction of atomic clusters with femtosecond laser pulses, nanoplasmas with high density are created. A new scaling for the rate of energy absorption in inverse bremsstrahlung heating has been derived which depends on the external laser field as well as electric field due to the other particles. Electric fields due to the particles depend on a parameter, the potential depth. Thus, inverse bremsstrahlung heating also depends on potential depth. We will discuss the particle in cell code results and molecular dynamics code results by varying laser intensities and potential depths to understand the effect of potential depth as well as the particle’s field’s dependence of inverse bremsstrahlung heating in laser-matter interaction.
Authors
-
Rishi Pandit
Southern Illinois University Edwardsville, IL
-
Yasuhiko Sentoku
Osaka University, Japan, University of Nevada Reno
-
Edward Ackad
Southern Illinois University Edwardsville, IL