Improving Hohlraums for High Foot Implosions

ORAL

Abstract

Analysis of High Foot implosions show that performance has been limited by the radiation drive environment, i.e., the hohlraum. Demonstrated here is that improvements in the radiation environment result in an enhancement in implosion performance. This is accomplished by using a longer, larger case-to-capsule ratio hohlraum at lower gas fill density. At fixed laser energy, High Foot implosions driven with this hohlraum have achieved a 1.4 x increase in stagnation pressure, with an accompanying relative increase in fusion yield of 50{\%}. Low mode asymmetries are still present, however, and are most likely a consequence of poor inner beam propagation through the hohlraum to the wall. Presented here are results from these High Foot implosions, as well as analyses of inner beam propagation, and additional hohlraum improvements that further ameliorate the implosion.

Authors

  • D. E. Hinkel

    LLNL, Lawrence Livermore Natl Lab, Lawrence Livermore National Laboratory, Lawrence Livermore National Lab

  • L. F. Berzak Hopkins

    Lawrence Livermore Natl Lab, llnl, LLNL

  • T. Ma

    Lawrence Livermore National Laboratory, Lawrence Livermore Natl Lab

  • J. E. Ralph

    Lawrence Livermore National Laboratory, Lawrence Livermore Natl Lab, Lawrence Livermore National Lab, LLNL

  • F. Albert

    Lawrence Livermore National Laboratory, Lawrence Livermore Natl Lab

  • Robin Benedetti

    LLNL, Lawrence Livermore Natl Lab, Lawrence Livermore National Laboratory

  • Peter Celliers

    Lawrence Livermore Natl Lab, Lawrence Livermore National Lab, Lawrence Livermore National Laboratory

  • Tilo Doeppner

    Lawrence Livermore Natl Lab, Lawrence Livermore National Laboratory

  • C. S. Goyon

    LLNL, Lawrence Livermore National Lab, Lawrence Livermore Natl Lab

  • N. Izumi

    LLNL, Lawrence Livermore Natl Lab

  • L. C. Jarrott

    Lawrence Livermore National Laboratory, Lawrence Livermore Natl Lab

  • S. F. Khan

    LLNL, Lawrence Livermore National Laboratory, Lawrence Livermore Natl Lab

  • J. L. Kline

    Los Alamos National Laboratory, Los Alamos Natl Lab, LANL

  • A. L. Kritcher

    Lawrence Livermore Natl Lab

  • G. A. Kyrala

    LANL, Los Alamos Natl Lab

  • S. R. Nagel

    LLNL, Lawrence Livermore National Laboratory, Lawrence Livermore Natl Lab

  • A. E. Pak

    Lawrence Livermore National Laboratory, LLNL, Lawrence Livermore Natl Lab

  • P. Patel

    Lawrence Livermore National Laboratory, LLNL, Lawrence Livermore Natl Lab

  • M. D. Rosen

    LLNL, Lawrence Livermore National Laboratory, Lawrence Livermore Natl Lab

  • Ryan Rygg

    Lawrence Livermore National Laboratory, Lawrence Livermore Natl Lab

  • M. B. Schneider

    LLNL, Lawrence Livermore National Laboratory, Lawrence Livermore Natl Lab

  • D. P. Turnbull

    University of Rochester, Lab. for Laser Energetics

  • C. B. Yeamans

    Lawrence Livermore National Laboratory, Lawrence Livermore Natl Lab

  • D. A. Callahan

    Lawrence Livermore Natl Lab, Lawrence Livermore National Laboratory, LLNL

  • O. A. Hurricane

    Lawrence Livermore Natl Lab, Lawrence Livermore National Laboratory