Efficient quasi-monoenergetic ion beams up to 18 MeV/nucleon via self-generated plasma fields in relativistic laser plasmas
ORAL
Abstract
Table-top laser-plasma ion accelerators seldom achieve narrow energy spreads, and never without serious compromises in efficiency, particle yield, etc. Using massive computer simulations, we identify a self-organizing scheme that exploits persisting self-generated plasma electric ($\sim$ TV/m) and magnetic ($\sim$ 10$^{4}$ Tesla) fields to reduce the ion energy spread after the laser exits the plasma -- separating the ion acceleration from the energy spread reduction. Consistent with the scheme, we experimentally demonstrate aluminum and carbon ion beams with narrow spectral peaks at energies up to 310 MeV (11.5 MeV/nucleon) and 220 MeV (18.3 MeV/nucleon), respectively, with high conversion efficiency ($\sim$ 5{\%}, i.e., 4J out of 80J laser). This is achieved with 0.12 PW high-contrast Gaussian laser pulses irradiating planar foils with optimal thicknesses of up to 250 nm that scale with laser intensity. When increasing the focused laser intensity fourfold (by reducing the focusing optic f/number twofold), the spectral-peak energy increases twofold. These results pave the way for next generation compact accelerators suitable for applications. For example, 400 MeV (33.3 MeV/nucleon) carbon-ion beam with narrow energy spread required for ion fast ignition could be generated using PW-class lasers.
–
Authors
-
S. Palaniyappan
Los Alamos Natl Lab, Los Alamos National Lab, LANL
-
Chengkun Huang
Los Alamos Natl Lab, Los Alamos National Lab
-
D. Gautier
Los Alamos Natl Lab, Los Alamos National Lab, LANL
-
Christopher Hamilton
Los Alamos National Laboratory, Los Alamos Natl Lab, Los Alamos National Lab
-
Miguel Santiago
Los Alamos Natl Lab, Los Alamos National Lab
-
Christian Kreuzer
Ludwig-Maximilian-University
-
Rahul Shah
Los Alamos National Laboratory, Los Alamos National Lab
-
J. Fernndez
Los Alamos Natl Lab, Los Alamos National Lab, Los Alamos National Lab., LANL