Copper Conductivity Model Development and Validation Using Flyer Plate Experiments on the Z-machine
POSTER
Abstract
Magnetically accelerated flyer plate experiments done on Sandia's Z-machine provide insight into a multitude of materials problems at high energies and densities including conductivity model development and validation. In an experiment with ten Cu flyer plates of thicknesses 500-1000 $\mu$m, VISAR measurements exhibit a characteristic jump in the velocity correlated with magnetic field burn-through and the expansion of melted material at the free surface. The experiment is modeled using Sandia's shock and multiphysics MHD code ALEGRA. Simulated free surface velocities are within 1\% of the measured data early in time, but divergence occurs at the feature, where the simulation indicates a slower burn through time. The cause was found to be in the Cu conductivity model's compressed regime. The model was improved by lowering the conductivity in the region 12.5-16 g/cc and 350-16000 K with a novel parameter based optimization method using the velocity feature as a figure of merit. \\[4pt] *Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Authors
-
L. Riford
Univ of Wisconsin, Madison
-
R.W. Lemke
Sandia National Laboratories
-
K. Cochrane
Sandia National Laboratories