Transport implications of hydrodynamic mix on hot-spot performance in inertial confinement fusion

POSTER

Abstract

In an inertial confinement fusion target, energy loss due to thermal conduction from the hot-spot will inevitably ablate fuel ice into the hot-spot, resulting in a more massive but cooler hot-spot, which negatively impacts fusion yield. Hydrodynamic mix due to the Rayleigh-Taylor instability at the gas-ice interface can aggravate the problem via an increased gas-ice interfacial area across which energy transfer from the hot-spot and ice can be enhanced. We quantify this mix-enhanced transport effect on hot-spot fusion-performance degradation using contrasting 1-D and 2-D hydrodynamic simulations, and identify its dependence on effective acceleration, Atwood number, and ablation speed. In the presence of magnetic fields, the thermal conduction is reduced which reduces the effect of ablative stabilization on mix mitigation while also reducing the amount of cold fuel being ablated into the hot-spot. A characterization of the transport enhanced mix characteristics with and without magnetic fields is performed to identify a regime where fusion-performance degradation is reduced by mix mitigation, through which the amount of cold fuel being ablated into the hot-spot is minimized.

Authors

  • Bhuvana Srinivasan

    Virginia Tech and Los Alamos National Laboratory

  • Xianzhu Tang

    Los Alamos National Laboratory