Nonlinear motion of non-uniform current-vortex sheets in MHD Richtmyer-Meshkov instability

ORAL

Abstract

When a supernova explosion occurs, materials that composed the star scatter in a high speed with a strong shock wave. These scattered materials, called ``supernova remnants'' (SNR), expand into the space and finally become a source in order to create new solar systems. It is known that SNR have a strong magnetic field compared to the surrounding interstellar medium; however, there exist few models to explain this extraordinary magnetic amplification mechanism in SNR. Here, we consider the Richtmyer-Meshkov instability in magnetohydrodynamic flows (MHD-RMI) and construct a model in order to describe the magnetic amplification in SNR. Due to the existence of the density jump, the tangential component of the magnetic field between the interface is different; therefore, the interface in MHD-RMI becomes a (non-uniform) current-vortex sheet. In this study, we investigate motion of this current-vortex sheet using the vortex blob method. We show that the current induced on a vortex sheet leads to a strong amplification of the magnetic field when the Lorenz force term is sufficiently small, and present various interfacial profiles depending on the magnitude of the Atwood number and Lorenz force.

Authors

  • Chihiro Matsuoka

    Department of Physics, Ehime University

  • Katsunobu Nishihara

    Institute of Laser Engineering, Osaka University

  • Takayoshi Sano

    Institute of Laser Engineering, Osaka University, Osaka University