Uncertainty-quantified reaction modeling via data-driven multi-objective optimization.
ORAL · Invited
Abstract
nuclear reaction parameters in the Hauser-Feshbach framework by simultaneously accounting for a precise theoretical description of
all available experimental data across multiple reaction channels in a given region of the nuclear chart. From this analysis, we capture parameter correlations and estimate
data-driven uncertainties for theoretical parameters of optical potentials and of level densities. We extract uncertainty-quantified resonance spacing values for all nuclei in the optimization network and thus propose estimated values for both stable and unstable isotopes. In this talk, we present the implementation of our approach in the Ni-Ge region and preliminary results of the same analysis for nuclei around 96Zr.
–
Publication: New approach for the quantification of uncertainties in reaction modeling via data-driven multi-objective optimization.<br>N. Dimitrakopoulos, G. Perdikakis, F. Montes, P. Gastis,<br>S. A. Kuvin, H. Y. Lee, P. Tsintari, and A. V. Voinov, submitted to Physical Review Letters
Presenters
-
Georgios Perdikakis
Central Michigan University
Authors
-
Georgios Perdikakis
Central Michigan University
-
Nikolaos Dimitrakopoulos
Central Michigan University
-
Fernando Montes
Facility for Rare Isotope Beams
-
Panagiotis Gastis
Los Alamos National Laboratory (LANL)
-
Sean A Kuvin
Los Alamos National Laboratory (LANL)
-
Hye Young Lee
Los Alamos National Laboratory (LANL)
-
Pelagia Tsintari
Facility for Rare Isotope Beams / Michigan State University
-
Alexander Voinov
Ohio University