Workshop: Current Applications of Machine Learning in Nuclear Physics II
INVITED · 4WC · ID: 3560766
Presentations
-
Optimizing Low-Energy Nuclear Reaction Measurements using Machine Learning
ORAL · Invited
–
Publication: Tsintari, P., Montes, F., Perdikakis, G., Schatz, H., et al. (2025b). Machine learning enabled measurements of astrophysical (p,n) reactions with the SECAR recoil separator. Physical Review Research, 7(1). https://doi.org/10.1103/physrevresearch.7.013074
Presenters
-
Pelagia Tsintari
Facility for Rare Isotope Beams / Michigan State University
Authors
-
Pelagia Tsintari
Facility for Rare Isotope Beams / Michigan State University
-
Kirby Hermansen
National Superconducting Cyclotron Laboratory, MSU
-
Fernando Montes
Facility for Rare Isotope Beams
-
Georg P Berg
University of Notre Dame
-
Benjamin H Bucci
Central Michigan University
-
Manoel Couder
University of Notre Dame
-
Georgios Perdikakis
Central Michigan University
-
Hendrik Schatz
Michigan State University and FRIB
-
-
Elucidating QGP properties at finite baryon density with Bayesian inference of RHIC Beam Energy Scan data
ORAL · Invited
–
Publication: 1] H. Roch, S. A. Jahan, and C. Shen, "Model emulation and closure tests for (3+1)D relativistic heavy-ion collisions," Phys. Rev. C 110, no.4, 044904 (2024)<br>[2] S. A. Jahan, H. Roch, and C. Shen, "Bayesian analysis of (3+1)D relativistic nuclear dynamics with the RHIC beam energy scan data," Phys. Rev. C 110, no.5, 054905 (2024)
Presenters
-
Chun Shen
Wayne State University
Authors
-
Chun Shen
Wayne State University
-
-
Data-driven classification of metal-poor stars using machine learning
ORAL · Invited
–
Publication: https://arxiv.org/abs/2505.14563
Presenters
-
Yilin Wang
University of British Columbia (UBC)
Authors
-
Yilin Wang
University of British Columbia (UBC)
-
Nicole Vassh
TRIUMF
-
Richard M Woloshyn
TRIUMF
-
Michelle Perry Kuchera
Davidson College
-
Maude Lariviere
TRIUMF
-
Kayle Majic
University of Victoria
-
Benoit Côté
Argonne National Laboratory
-