The evolution of jet quenching form RHIC to the highest LHC energies

ORAL

Abstract

Effective field theory (EFT) is a powerful framework based on exploiting symmetries and controlled expansions for problems with a natural separation of energy or distance scales. EFTs are particularly important in QCD and nuclear physics. An effective theory of QCD, ideally suited to jet applications, is Soft-Collinear Effective Theory (SCET). Recently, first steps were taken to extend SCET and describe jet evolution in strongly-interacting matter. In this talk I will demonstrate that the newly constructed theory, called SCETG, allows us for the first time in more than a decade to go beyond the traditional energy loss approximation in heavy ion collisions and unify the treatment of vacuum and medium-induced parton showers. It provides quantitative control over the uncertainties associated with the implementation of the in-medium modification of hadron production cross sections and allows us to accurately constrain the coupling between the jet and the medium. I will further show how SCETG is implemented to present predictions for inclusive hadron suppression in Pb+Pb collisions at the highest LHC energies of 5.1 ATeV and discuss the relative significance of cold and hot nuclear matter effects.

Authors

  • Ivan Vitev

    LANL