Magnet Design and Simulation for Neutron Interferometry
POSTER
Abstract
The study of neutron interferometry highlights some of the essential components of quantum mechanics allowing us to study the wave-like nature of the neutron. The spin of polarized monochromatic neutrons in an interferometer can be flipped by passing through a static B-field perpendicular to the holding field. Constraints on such a magnet are that the field must be constant within a cylindrical volume, but zero everywhere outside the coil. A double cosine theta coil meets the needs of this particular device. The design, simulation, and plans for construction of this magnet will be presented.
Authors
-
Robert Milburn
University of Kentucky
-
Chris Crawford
-
Elise Martin