APS Logo

Fourier analysis of the physics of transfer learning for data-driven subgrid-scale models of ocean turbulence

ORAL

Abstract

Transfer learning (TL) is a powerful tool for enhancing the performance of neural networks (NNs) in applications such as weather and climate prediction and turbulence modeling. TL enables models to generalize to out-of-distribution data with minimal training data from the new system. In this study, we employ a 9-layer convolutional NN to predict the subgrid forcing in a two-layer ocean quasi-geostrophic system and examine which metrics best describe its performance and generalizability to unseen dynamical regimes. Fourier analysis of the NN kernels reveals that they learn low-pass, Gabor, and high-pass filters, regardless of whether the training data are isotropic or anisotropic. By analyzing the activation spectra, we identify why NNs fail to generalize without TL and how TL can overcome these limitations: the learned weights and biases from one dataset underestimate the out-of-distribution sample spectra as they pass through the network, leading to an underestimation of output spectra. By re-training only one layer with data from the target system, this underestimation is corrected, enabling the NN to produce predictions that match the target spectra. These findings are broadly applicable to data-driven parameterization of dynamical systems.

Publication: Abernathey R, Rochanotes, Ross A, Jansen M, Ziwei Li, Poulin FJ, Constantinou NC, Anirban Sinha, Dhruv Balwada,<br>SalahKouhen, Jones S, Rocha CB, Wolfe CLP, Chuizheng Meng, Van Kemenade H, Bourbeau J, Penn J, Busecke J,<br>Bueti M and , Tobias (2022) pyqg/pyqg: v0.7.2. doi: 10.5281/ZENODO.6563667. Available at https://zenodo.org/record/<br>6563667.<br>Arakawa A and Lamb VR (1977) Computational Design of the Basic Dynamical Processes of the UCLA General Circulation<br>Model. In General Circulation Models of the Atmosphere. Elsevier, 173–265. doi: 10.1016/b978-0-12-460817-7.50009-4.<br>Available at http://dx.doi.org/10.1016/B978-0-12-460817-7.50009-4.<br>Bracco A, Brajard J, Dijkstra HA, Hassanzadeh P, Lessig C and Monteleoni C (2025) Machine learning for the physics of<br>climate. Nature Reviews Physics 7(1), 6–20.<br>Bracco A, Brajard J, Dijkstra HA, Hassanzadeh P, Lessig C and Monteleoni C (2024) Machine learning for the physics of<br>climate. Nature Reviews Physics 7(1), 6–20. issn: 2522-5820. doi: 10.1038/s42254-024-00776-3. http://dx.doi.org/10.1038/<br>s42254-024-00776-3.<br>Carati D, Ghosal S and Moin P (1995) On the representation of backscatter in dynamic localization models. Physics of Fluids<br>7(3), 606–616. issn: 1089-7666. doi: 10.1063/1.868585. http://dx.doi.org/10.1063/1.868585.<br>Chattopadhyay A, Gray M, Wu T, Lowe AB and He R (2024) OceanNet: A principled neural operator-based digital twin for<br>regional oceans. Scientific Reports 14(1), 21181.<br>Chattopadhyay A and Hassanzadeh P (2023) Long-term instabilities of deep learning-based digital twins of the climate system:<br>The cause and a solution. arXiv preprint arXiv:2304.07029.<br>Chattopadhyay A, Subel A and Hassanzadeh P (2020) Data-driven super-parameterization using deep learning: Experimen-<br>tation with multiscale Lorenz 96 systems and transfer learning. Journal of Advances in Modeling Earth Systems 12(11),<br>e2020MS002084.<br>Chen X, Gong C, Wan Q, Deng L, Wan Y, Liu Y, Chen B and Liu J (2021) Transfer learning for deep neural network-based<br>partial differential equations solving. Advances in Aerodynamics 3(1). issn: 2524-6992. doi: 10.1186/s42774-021-00094-7.<br>http://dx.doi.org/10.1186/s42774-021-00094-7.<br>Desai S, Mattheakis M, Joy H, Protopapas P and Roberts S (2021) One-Shot Transfer Learning of Physics-Informed Neural<br>Networks. doi: 10.48550/ARXIV.2110.11286. Available at https://arxiv.org/abs/2110.11286.<br>Dipankar A, Stevens B, Heinze R, Moseley C, Zängl G, Giorgetta M and Brdar S (2015) Large eddy simulation using<br>the general circulation model <scp>ICON</scp>. Journal of Advances in Modeling Earth Systems 7(3), 963–986. issn:<br>1942-2466. doi: 10.1002/2015ms000431. http://dx.doi.org/10.1002/2015MS000431.<br>Domaradzki JA, Metcalfe RW, Rogallo RS and Riley JJ (1987) Analysis of subgrid-scale eddy viscosity with use of results<br>from direct numerical simulations. Physical Review Letters 58(6), 547–550. issn: 0031-9007. doi: 10.1103/physrevlett.58.547.<br>http://dx.doi.org/10.1103/PhysRevLett.58.547.<br>Fox DG and Orszag SA (1973) Pseudospectral approximation to two-dimensional turbulence. Journal of Computational Physics<br>11(4), 612–619.<br>Fox RO (2012) Large-Eddy-Simulation Tools for Multiphase Flows. Annual Review of Fluid Mechanics 44(1), 47–76. issn:<br>1545-4479. doi: 10.1146/annurev-fluid-120710-101118. http://dx.doi.org/10.1146/annurev-fluid-120710-101118.<br>Fox-Kemper B and Menemenlis D (2008) Can large eddy simulation techniques improve mesoscale rich ocean models? In<br>Geophysical Monograph Series. American Geophysical Union, 319–337. doi: 10.1029/177gm19. Available at http://dx.doi.<br>org/10.1029/177GM19.<br>Gallet B and Ferrari R (2021) A quantitative scaling theory for meridional heat transport in planetary atmospheres and oceans.<br>AGU Advances 2(3), e2020AV000362.<br>Gao Y, Cheung KC and Ng MK (2022) SVD-PINNs: Transfer Learning of Physics-Informed Neural Networks via Singular<br>Value Decomposition. In 2022 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE. doi: 10.1109/ssci51031.<br>2022.10022281. Available at http://dx.doi.org/10.1109/SSCI51031.2022.10022281.<br>Germano M, Piomelli U, Moin P and Cabot WH (1991) A dynamic subgrid-scale eddy viscosity model. Physics of Fluids A:<br>Fluid Dynamics 3(7), 1760–1765. issn: 0899-8213. doi: 10.1063/1.857955. http://dx.doi.org/10.1063/1.857955.<br>Goswami S, Anitescu C, Chakraborty S and Rabczuk T (2020) Transfer learning enhanced physics informed neural network<br>for phase-field modeling of fracture. Theoretical and Applied Fracture Mechanics 106, 102447. issn: 0167-8442. doi:<br>10.1016/j.tafmec.2019.102447. http://dx.doi.org/10.1016/j.tafmec.2019.102447.<br>Goswami S, Kontolati K, Shields MD and Karniadakis GE (2022) Deep transfer operator learning for partial differential<br>equations under conditional shift. Nature Machine Intelligence 4(12), 1155–1164. issn: 2522-5839. doi: 10.1038/s42256-<br>022-00569-2. http://dx.doi.org/10.1038/s42256-022-00569-2.<br>Gray MA, Chattopadhyay A, Wu T, Lowe A and He R (2024) Long-term Prediction of the Gulf Stream Meander Using<br>OceanNet: a Principled Neural Operator-based Digital Twin. EGUsphere 2024, 1–23.<br>Grooms I (2023a) Backscatter in energetically-constrained Leith parameterizations. Ocean Modelling 186, 102265.<br>Grooms I (2023b) Backscatter in energetically-constrained Leith parameterizations. Ocean Modelling 186, 102265. issn: 1463-<br>5003. doi: 10.1016/j.ocemod.2023.102265. http://dx.doi.org/10.1016/j.ocemod.2023.102265.<br>Guan Y, Chattopadhyay A, Subel A and Hassanzadeh P (2022a) Stable a posteriori LES of 2D turbulence using convolutional<br>neural networks: Backscattering analysis and generalization to higher Re via transfer learning. Journal of Computational<br>Physics 458, 111090.<br>Guan Y, Hassanzadeh P, Schneider T, Dunbar O, Huang DZ, Wu J and Lopez-Gomez I (2024) Online learning of eddy-<br>viscosity and backscattering closures for geophysical turbulence using ensemble Kalman inversion. doi: 10.48550/ARXIV.<br>2409.04985. Available at https://arxiv.org/abs/2409.04985.<br>Guan Y, Subel A, Chattopadhyay A and Hassanzadeh P (2023) Learning physics-constrained subgrid-scale closures in the<br>small-data regime for stable and accurate LES. Physica D: Nonlinear Phenomena 443, 133568.<br>Guo H, Zhuang X, Chen P, Alajlan N and Rabczuk T (2022) Analysis of three-dimensional potential problems in non-<br>homogeneous media with physics-informed deep collocation method using material transfer learning and sensitivity analysis.<br>Engineering with Computers 38(6), 5423–5444. issn: 1435-5663. doi: 10.1007/s00366-022-01633-6. http://dx.doi.org/10.<br>1007/s00366-022-01633-6.<br>Haghighat E, Raissi M, Moure A, Gomez H and Juanes R (2021) A physics-informed deep learning framework for inversion<br>and surrogate modeling in solid mechanics. Computer Methods in Applied Mechanics and Engineering 379, 113741. issn:<br>0045-7825. doi: 10.1016/j.cma.2021.113741. http://dx.doi.org/10.1016/j.cma.2021.113741.<br>Hallberg R (2013) Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects. Ocean Modelling<br>72, 92–103.<br>Hanna JM, Aguado JV, Comas-Cardona S, Askri R and Borzacchiello D (2022) Residual-based adaptivity for two-phase<br>flow simulation in porous media using Physics-informed Neural Networks. Computer Methods in Applied Mechanics and<br>Engineering 396, 115100. issn: 0045-7825. doi: 10.1016/j.cma.2022.115100. http://dx.doi.org/10.1016/j.cma.2022.115100.<br>Hornik K, Stinchcombe M and White H (1989) Multilayer feedforward networks are universal approximators. Neural Networks<br>2(5), 359–366. issn: 0893-6080. doi: 10.1016/0893-6080(89)90020-8. http://dx.doi.org/10.1016/0893-6080(89)90020-8.<br>Jakhar K, Guan Y, Mojgani R, Chattopadhyay A and Hassanzadeh P (2023) Learning Closed-form Equations for Subgrid-<br>scale Closures from High-fidelity Data: Promises and Challenges. doi: 10.48550/ARXIV.2306.05014. Available at https:<br>//arxiv.org/abs/2306.05014.<br><br>Jansen MF, Adcroft A, Khani S and Kong H (2019) Toward an Energetically Consistent, Resolution Aware Parameterization<br>of Ocean Mesoscale Eddies. Journal of Advances in Modeling Earth Systems 11(8), 2844–2860. issn: 1942-2466. doi:<br>10.1029/2019ms001750. http://dx.doi.org/10.1029/2019MS001750.<br>Jansen MF and Held IM (2014) Parameterizing subgrid-scale eddy effects using energetically consistent backscatter. Ocean<br>Modelling 80, 36–48. issn: 1463-5003. doi: 10.1016/j.ocemod.2014.06.002. http://dx.doi.org/10.1016/j.ocemod.2014.06.002.<br>Kent J, Jablonowski C, Thuburn J and Wood N (2016) An energy-conserving restoration scheme for the shallow-water<br>equations. Quarterly Journal of the Royal Meteorological Society 142(695), 1100–1110. issn: 1477-870X. doi: 10.1002/qj.<br>2713. http://dx.doi.org/10.1002/qj.2713.<br>Kerr RM, Domaradzki JA and Barbier G (1996) Small-scale properties of nonlinear interactions and subgrid-scale energy<br>transfer in isotropic turbulence. Physics of Fluids 8(1), 197–208. issn: 1089-7666. doi: 10.1063/1.868827. http://dx.doi.org/<br>10.1063/1.868827.<br>Khani S and Waite ML (2016) Backscatter in stratified turbulence. European Journal of Mechanics - B/Fluids 60, 1–12. issn:<br>0997-7546. doi: 10.1016/j.euromechflu.2016.06.012. http://dx.doi.org/10.1016/j.euromechflu.2016.06.012.<br>Kingma DP and Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.<br>Knaepen B and Moin P (2004) Large-eddy simulation of conductive flows at low magnetic Reynolds number. Physics of Fluids<br>16(5), 1255–1261. issn: 1089-7666. doi: 10.1063/1.1651484. http://dx.doi.org/10.1063/1.1651484.<br>Krueger D, Caballero E, Jacobsen JH, Zhang A, Binas J, Zhang D, Priol RL and Courville A (2020) Out-of-Distribution<br>Generalization via Risk Extrapolation (REx). doi: 10.48550/ARXIV.2003.00688. Available at https://arxiv.org/abs/2003.<br>00688.<br>Larraondo PR, Renzullo LJ, Inza I and Lozano JA (2019) A data-driven approach to precipitation parameterizations using<br>convolutional encoder-decoder neural networks. doi: 10.48550/ARXIV.1903.10274. Available at https://arxiv.org/abs/1903.<br>10274.<br>Leslie DC and Quarini GL (1979) The application of turbulence theory to the formulation of subgrid modelling procedures.<br>Journal of Fluid Mechanics 91(01), 65. issn: 1469-7645. doi: 10.1017/s0022112079000045. http://dx.doi.org/10.1017/<br>S0022112079000045.<br>Li Z, Zheng H, Kovachki N, Jin D, Chen H, Liu B, Azizzadenesheli K and Anandkumar A (2021) Physics-Informed Neural<br>Operator for Learning Partial Differential Equations. doi: 10.48550/ARXIV.2111.03794. Available at https://arxiv.org/abs/<br>2111.03794.<br>Lund T (1997) On the use of discrete filters for large eddy simulation. Annual Research Briefs, 83–95.<br>Lupin-Jimenez L, Darman M, Hazarika S, Wu T, Gray M, He R, Wong A and Chattopadhyay A (2025) Simultane-<br>ous emulation and downscaling with physically-consistent deep learning-based regional ocean emulators. arXiv preprint<br>arXiv:2501.05058.<br>Mason PJ and Thomson DJ (1992) Stochastic backscatter in large-eddy simulations of boundary layers. Journal of Fluid<br>Mechanics 242, 51–78. issn: 1469-7645. doi: 10.1017/s0022112092002271. http://dx.doi.org/10.1017/S0022112092002271.<br>Mathieu M, Henaff M and LeCun Y (2013) Fast training of convolutional networks through ffts. arXiv preprint arXiv:1312.5851.<br>Mattheakis M, Joy H and Protopapas P (2021) Unsupervised Reservoir Computing for Solving Ordinary Differential Equations.<br>doi: 10.48550/ARXIV.2108.11417. Available at https://arxiv.org/abs/2108.11417.<br>Meneveau C and Katz J (2000) Scale-Invariance and Turbulence Models for Large-Eddy Simulation. Annual Review of Fluid<br>Mechanics 32(1), 1–32. issn: 1545-4479. doi: 10.1146/annurev.fluid.32.1.1. http://dx.doi.org/10.1146/annurev.fluid.32.1.1.<br>Orszag SA (1971) On the elimination of aliasing in finite-difference schemes by filtering high-wavenumber components. Journal<br>of Atmospheric Sciences 28(6), 1074–1074.<br>Pahlavan HA, Hassanzadeh P and Alexander MJ (2024a) Explainable Offline-Online Training of Neural Networks for<br>Parameterizations: A 1D Gravity Wave-QBO Testbed in the Small-Data Regime. Geophysical Research Letters 51(2),<br>e2023GL106324.<br>Pahlavan HA, Hassanzadeh P and Alexander MJ (2024b) Explainable Offline-Online Training of Neural Networks for<br>Parameterizations: A 1D Gravity Wave-QBO Testbed in the Small-Data Regime. Geophysical Research Letters 51(2). issn:<br>1944-8007. doi: 10.1029/2023gl106324. http://dx.doi.org/10.1029/2023GL106324.<br>Piomelli U (1999) Large-eddy simulation: achievements and challenges. Progress in Aerospace Sciences 35(4), 335–362. issn:<br>0376-0421. doi: 10.1016/s0376-0421(98)00014-1. http://dx.doi.org/10.1016/S0376-0421(98)00014-1.<br>Pope S (2000) Turbulent flows. Cambridge university press.<br>Porta Mana P and Zanna L (2014) Toward a stochastic parameterization of ocean mesoscale eddies. Ocean Modelling 79, 1–20.<br>issn: 1463-5003. doi: 10.1016/j.ocemod.2014.04.002. http://dx.doi.org/10.1016/j.ocemod.2014.04.002.<br>Pressel KG, Mishra S, Schneider T, Kaul CM and Tan Z (2017) Numerics and subgrid-scale modeling in large eddy<br>simulations of stratocumulus clouds. Journal of Advances in Modeling Earth Systems 9(2), 1342–1365. issn: 1942-2466. doi:<br>10.1002/2016ms000778. http://dx.doi.org/10.1002/2016MS000778.<br>Rasp S, Pritchard MS and Gentine P (2018) Deep learning to represent subgrid processes in climate models. Proceedings of<br>the National Academy of Sciences 115(39), 9684–9689. issn: 1091-6490. doi: 10.1073/pnas.1810286115. http://dx.doi.org/<br>10.1073/pnas.1810286115.<br>Ross A, Li Z, Perezhogin P, Fernandez-Granda C and Zanna L (2023) Benchmarking of machine learning ocean subgrid<br>parameterizations in an idealized model. Journal of Advances in Modeling Earth Systems 15(1), e2022MS003258.<br>Sagaut P (2005) Large eddy simulation for incompressible flows: an introduction. Springer Science & Business Media.<br><br>Sagaut P, Terracol M and Deck S (2013) Multiscale and multiresolution approaches in turbulence-LES, DES and Hybrid<br>RANS/LES Methods: Applications and Guidelines. World Scientific.<br>Sarlak H, Meneveau C and Sørensen J (2015) Role of subgrid-scale modeling in large eddy simulation of wind turbine wake<br>interactions. Renewable Energy 77, 386–399. issn: 0960-1481. doi: 10.1016/j.renene.2014.12.036. http://dx.doi.org/10.<br>1016/j.renene.2014.12.036.<br>Schneider T, Lan S, Stuart A and Teixeira J (2017) Earth System Modeling 2.0: A Blueprint for Models That Learn<br>From Observations and Targeted High-Resolution Simulations. Geophysical Research Letters 44(24). issn: 1944-8007. doi:<br>10.1002/2017gl076101. http://dx.doi.org/10.1002/2017GL076101.<br>Shevchenko I and Berloff P (2021) On a minimum set of equations for parameterisations in comprehensive ocean circulation<br>models. Ocean Modelling 168, 101913. issn: 1463-5003. doi: 10.1016/j.ocemod.2021.101913. http://dx.doi.org/10.1016/j.<br>ocemod.2021.101913.<br>Shinde V (2020) Proper orthogonal decomposition assisted subfilter-scale model of turbulence for large eddy simulation. Physical<br>Review Fluids 5(1). issn: 2469-990X. doi: 10.1103/physrevfluids.5.014605. http://dx.doi.org/10.1103/PhysRevFluids.5.<br>014605.<br>Smagorinsky (1963) GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS: I. THE BASIC<br>EXPERIMENT*. Monthly Weather Review 91(3), 99–164. issn: 1520-0493. doi: 10 . 1175 / 1520 - 0493(1963 ) 091<0099 :<br>gcewtp>2.3.co;2. http://dx.doi.org/10.1175/1520-0493(1963)091%3C0099:GCEWTP%3E2.3.CO;2.<br>Stevens RJ, Martínez-Tossas LA and Meneveau C (2018) Comparison of wind farm large eddy simulations using actuator disk<br>and actuator line models with wind tunnel experiments. Renewable Energy 116, 470–478. issn: 0960-1481. doi: 10.1016/j.<br>renene.2017.08.072. http://dx.doi.org/10.1016/j.renene.2017.08.072.<br>Subel A, Chattopadhyay A, Guan Y and Hassanzadeh P (2021) Data-driven subgrid-scale modeling of forced Burgers<br>turbulence using deep learning with generalization to higher Reynolds numbers via transfer learning. Physics of Fluids 33(3),<br>031702.<br>Subel A, Guan Y, Chattopadhyay A and Hassanzadeh P (2023) Explaining the physics of transfer learning in data-driven<br>turbulence modeling. PNAS Nexus, pgad015.<br>Subramanian S, Harrington P, Keutzer K, Bhimji W, Morozov D, Mahoney M and Gholami A (2023) Towards Foundation<br>Models for Scientific Machine Learning: Characterizing Scaling and Transfer Behavior. doi: 10.48550/ARXIV.2306.00258.<br>https://arxiv.org/abs/2306.00258.<br>Sun YQ, Pahlavan HA, Chattopadhyay A, Hassanzadeh P, Lubis SW, Alexander MJ, Gerber E, Sheshadri A and<br>Guan Y (2023) Data Imbalance, Uncertainty Quantification, and Generalization via Transfer Learning in Data-driven<br>Parameterizations: Lessons from the Emulation of Gravity Wave Momentum Transport in WACCM. doi: 10.48550/ARXIV.<br>2311.17078. Available at https://arxiv.org/abs/2311.17078.<br>Tan Z, Schneider T, Teixeira J and Pressel KG (2017) Large-eddy simulation of subtropical cloud-topped boundary layers:<br>2. Cloud response to climate change. Journal of Advances in Modeling Earth Systems 9(1), 19–38. issn: 1942-2466. doi:<br>10.1002/2016ms000804. http://dx.doi.org/10.1002/2016MS000804.<br>Thuburn J, Kent J and Wood N (2013) Cascades, backscatter and conservation in numerical models of two-dimensional<br>turbulence. Quarterly Journal of the Royal Meteorological Society 140(679), 626–638. issn: 1477-870X. doi: 10.1002/qj.2166.<br>http://dx.doi.org/10.1002/qj.2166.<br>Xu C, Cao BT, Yuan Y and Meschke G (2023) Transfer learning based physics-informed neural networks for solving inverse prob-<br>lems in engineering structures under different loading scenarios. Computer Methods in Applied Mechanics and Engineering<br>405, 115852. issn: 0045-7825. doi: 10.1016/j.cma.2022.115852. http://dx.doi.org/10.1016/j.cma.2022.115852.<br>Xu W, Lu Y and Wang L (2022) Transfer Learning Enhanced DeepONet for Long-Time Prediction of Evolution Equations. doi:<br>10.48550/ARXIV.2212.04663. Available at https://arxiv.org/abs/2212.04663.<br>Yosinski J, Clune J, Bengio Y and Lipson H (2014) How transferable are features in deep neural networks? doi: 10.48550/<br>ARXIV.1411.1792. https://arxiv.org/abs/1411.1792.<br>Zanna L and Bolton T (2020) Data-Driven Equation Discovery of Ocean Mesoscale Closures. Geophysical Research Letters<br>47(17). issn: 1944-8007. doi: 10.1029/2020gl088376. http://dx.doi.org/10.1029/2020GL088376.<br>Zhou Y (1991) Eddy damping, backscatter, and subgrid stresses in subgrid modeling of turbulence. Physical Review A 43(12),<br>7049–7052. issn: 1094-1622. doi: 10.1103/physreva.43.7049. http://dx.doi.org/10.1103/PhysRevA.43.7049.<br>Zhuang F, Qi Z, Duan K, Xi D, Zhu Y, Zhu H, Xiong H and He Q (2021) A Comprehensive Survey on Transfer Learning.<br>Proceedings of the IEEE 109(1), 43–76. issn: 1558-2256. doi: 10.1109/jproc.2020.3004555. http://dx.doi.org/10.1109/<br>JPROC.2020.3004555.<br>

Presenters

  • Moein Darman

    University of California, Santa Cruz

Authors

  • Moein Darman

    University of California, Santa Cruz

  • Pedram Hassanzadeh

    University of Chicago

  • Ashesh K Chattopadhyay

    University of California, Santa Cruz

  • Laure Zanna

    Courant Institute of Mathematical Sciences